MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 2.4

Math 2050 Worksheet
Winter 2018

SOLUTIONS

1. (a) In matrix form, we have

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
1 & -2 & -2 \\
-4 & 8 & 6
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-(-4) R_{1}}\left[\begin{array}{ccc}
1 & -2 & -2 \\
0 & 0 & -2
\end{array}\right]} \\
\\
\xrightarrow{R_{2} \rightarrow-\frac{1}{2} R_{2}}\left[\begin{array}{ccc}
1 & -2 & -2 \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

so we can let $y=t$ and thus we have

$$
\begin{aligned}
& z=0 \\
& x=2 y+2 z=2 t .
\end{aligned}
$$

Hence a solution to the system is $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 t \\ t \\ 0\end{array}\right]=t\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$.
(b) In matrix form, we have

$$
\left.\begin{gathered}
{\left[\begin{array}{cccc}
1 & -3 & 0 & 4 \\
-1 & 1 & 4 & -2 \\
1 & 0 & -6 & 1 \\
2 & -5 & -2 & 7
\end{array}\right]} \\
\left.\begin{array}{c}
\text { R }
\end{array}\right] \\
\xrightarrow{R_{2} \rightarrow R_{2}-(-1) R_{1}} \\
R_{3} \rightarrow R_{3}-R_{1} \\
R_{4} \rightarrow 2 R_{1}
\end{gathered} \right\rvert\,\left[\begin{array}{cccc}
1 & -3 & 0 & 4 \\
0 & -2 & 4 & 2 \\
0 & 3 & -6 & -3 \\
0 & 1 & -2 & -1
\end{array}\right]
$$

so we can let $x_{4}=t, x_{3}=s$ and then determine

$$
\begin{aligned}
& x_{2}=2 x_{3}+x_{4}=2 s+t \\
& x_{1}=3 x_{2}-4 x_{4}=6 s-t .
\end{aligned}
$$

Hence a solution to the system is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}6 s-t \\ 2 s+t \\ s \\ t\end{array}\right]=s\left[\begin{array}{l}6 \\ 2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 1\end{array}\right]$.
2. (a) Using the same matrix manipulations as in \#1(a), we have

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
1 & -2 & -2 & -5 \\
-4 & 8 & 6 & 9
\end{array}\right] } & \longrightarrow\left[\begin{array}{ccc|c}
1 & -2 & -2 & -5 \\
0 & 0 & -2 & -11
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & -2 & -2 & -5 \\
0 & 0 & 1 & \frac{11}{2}
\end{array}\right]
\end{aligned}
$$

so we can let $y=t$ and then

$$
\begin{aligned}
& z=\frac{11}{2} \\
& x=-5+2 y+2 z=6+2 t
\end{aligned}
$$

so then

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6+2 t \\
t \\
\frac{11}{2}
\end{array}\right]=\left[\begin{array}{c}
6 \\
0 \\
\frac{11}{2}
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\mathbf{x}_{p}+\mathbf{x}_{h} .
$$

(b) Using the same matrix manipulations as in $\# 1(\mathrm{~b})$, we have

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
1 & -3 & - & 4 & 6 \\
-1 & 1 & 4 & -2 & -8 \\
1 & 0 & -6 & 1 & 9 \\
2 & -5 & -2 & 7 & 13
\end{array}\right]}
\end{gathered} \rightarrow\left[\begin{array}{cccc|c}
1 & -3 & 0 & 4 & 6 \\
0 & -2 & 4 & 2 & -2 \\
0 & 3 & -6 & -3 & 3 \\
0 & 1 & -2 & -1 & 1
\end{array}\right]
$$

so again we can set $x_{4}=t$ and $x_{3}=s$ and then we get

$$
\begin{aligned}
& x_{2}=1+2 x_{3}+x_{4}=1+2 s+t \\
& x_{1}=6+3 x_{2}-4 x_{4}=9+6 s-t
\end{aligned}
$$

so that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
9+6 s-t \\
1+2 s+t \\
s \\
t
\end{array}\right]=\left[\begin{array}{l}
9 \\
1 \\
0 \\
0
\end{array}\right]+\left(\left[\begin{array}{l}
6 \\
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]\right)=\mathbf{x}_{p}+\mathbf{x}_{h}
$$

3. (a) We let $A \mathbf{k}=\mathbf{0}$. The corresponding matrix is

$$
\left.\begin{array}{r}
{\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & -4 & -3 \\
0 & -1 & -1
\end{array}\right] \xrightarrow{R_{2} \rightarrow-\frac{1}{4} R_{2}}\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 1 & \frac{3}{4} \\
0 & -1 & -1
\end{array}\right]} \\
R_{3} \rightarrow R_{3}-(-1) R_{2}
\end{array}\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 1 & \frac{3}{4} \\
0 & 0 & -\frac{1}{4}
\end{array}\right] \xrightarrow{R_{3} \rightarrow(-4) R_{3}}\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 1 & \frac{3}{4} \\
0 & 0 & 1
\end{array}\right]\right)
$$

so we see that $k_{3}=0$ so $k_{2}=-\frac{3}{4} k_{3}=0$ and $k_{1}=-3 k_{2}-5 k_{3}=0$. Hence these three vectors are linearly independent.
(b) We let $A \mathbf{k}=\mathbf{0}$. The corresponding matrix is

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
1 & 1 & 2 \\
1 & 7 & 5 \\
1 & -5 & -1 \\
2 & -6 & 0 \\
2 & 0 & 3
\end{array}\right] \stackrel{\substack{R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1} \\
R_{4} \rightarrow R_{4}-2 R_{1} \\
R_{5} \rightarrow R_{5}-2 R_{1}}}{\longrightarrow}\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 6 & 3 \\
0 & -6 & -3 \\
0 & -8 & -4 \\
0 & -2 & -1
\end{array}\right]} \\
R_{2} \rightarrow \frac{1}{6} R_{2}
\end{array}\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & \frac{1}{2} \\
0 & -6 & -3 \\
0 & -8 & -4 \\
0 & -2 & -1
\end{array}\right] \xrightarrow[\substack{R_{3} \rightarrow R_{3}-(-6) R_{2} \\
R_{4} \rightarrow R_{4}-(-8) R_{2} \\
R_{5} \rightarrow R_{5}-(-2) R_{2}}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so each of k_{3}, k_{4} and k_{5} is a free variable, and hence these vectors are linearly dependent.
(c) We let $A \mathbf{k}=\mathbf{0}$. The corresponding matrix is

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccc}
1 & 2 & 3 & 6 \\
0 & 4 & 4 & 4 \\
-1 & 0 & 1 & 0 \\
-1 & 0 & -1 & -4
\end{array}\right]} \\
\xrightarrow{\substack{R_{3} \rightarrow R_{3}-(-1) R_{1} \\
R_{4} \rightarrow R_{4}-(-1) R_{1}}}\left[\begin{array}{cccc}
1 & 2 & 3 & 6 \\
0 & 4 & 4 & 4 \\
0 & 2 & 4 & 6 \\
0 & 2 & 2 & 2
\end{array}\right] \\
\xrightarrow{R_{2} \rightarrow \frac{1}{4} R_{2}}\left[\begin{array}{cccc}
1 & 2 & 3 & 2 \\
0 & 1 & 1 & 1 \\
0 & 2 & 4 & 6 \\
0 & 2 & 2 & 2
\end{array}\right]
\end{array} \xrightarrow[\substack{R_{3} \rightarrow R_{3}-2 R_{2} \\
R_{4} \rightarrow R_{4}-2 R_{2}}]{ }\left[\begin{array}{ccccc}
1 & 2 & 3 & 6 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\right) .
$$

and so without further work, we see that k_{4} is a free variable. Hence there is an infinite number of solutions to the system, and so these vectors are linearly dependent.
4. We set $A B \mathbf{x}=\mathbf{0}$; we want to show that $\mathbf{x}=\mathbf{0}$ is the only solution to this equation. But note that we can write $A B \mathbf{x}=A \mathbf{y}$ where $\mathbf{y}=B \mathbf{x}$. Then since the columns of A are linearly independent and $A \mathbf{y}=\mathbf{0}$, it must be that $\mathbf{y}=\mathbf{0}$. But then $B \mathbf{x}=\mathbf{0}$, and since the columns of B are linearly independent, it must be that $\mathbf{x}=\mathbf{0}$. Hence the columns of $A B$ are also linearly independent.
Alternatively, we might recall that a matrix has linearly independent columns if and only if it is invertible. Thus A and B are both invertible, and so if

$$
\begin{aligned}
A B \mathbf{x} & =\mathbf{0} \\
A^{-1} A B \mathbf{x} & =A^{-1} \mathbf{0} \\
B \mathbf{x} & =\mathbf{0} \\
B^{-1} B \mathbf{x} & =B^{-1} \mathbf{0} \\
\mathbf{x} & =\mathbf{0}
\end{aligned}
$$

again showing that the columns of $A B$ are linearly independent.

