MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) Observe that $a d-b c=-6-(-5)-1 \neq 0$ so this matrix is invertible:

$$
A^{-1}=\frac{1}{-1}\left[\begin{array}{ll}
-3 & 5 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
3 & -5 \\
1 & -2
\end{array}\right]
$$

(b) This time $a d-b c=0-6=-6 \neq 0$ so this matrix is also invertible:

$$
B^{-1}=\frac{1}{-6}\left[\begin{array}{ll}
6 & 3 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
-1 & -\frac{1}{2} \\
-\frac{1}{3} & 0
\end{array}\right]
$$

(c) In this case, $a d-b c=-9-(-9)=0$ so C is not invertible.
2. (a) Observe that

$$
A B=\left[\begin{array}{ccc}
-6 & 8 & 9 \\
1 & -1 & -1 \\
-3 & 4 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & -1 \\
2 & 3 & -3 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

so $B=A^{-1}$.
(b) A and B are not square matrices, so therefore they are not invertible. Alternatively, we could observe that while $A B=I$,

$$
B A=\left[\begin{array}{ccc}
\frac{7}{2} & \frac{15}{2} & 15 \\
\frac{5}{6} & \frac{7}{2} & 5 \\
-1 & -3 & -5
\end{array}\right] \neq I
$$

3. Multiplying both sides by X gives

$$
\begin{aligned}
\left(A+B X^{-1}\right) X & =\left(C X^{-1}\right) X \\
A X+B X^{-1} X & =C X^{-1} X \\
A X+B I & =C I \\
A X+B & =C \\
A X & =C-B \\
X & =A^{-1}(C-B),
\end{aligned}
$$

where we have used the fact that A is invertible.
4. Given two matrices, we know that $(A B)^{T}=B^{T} A^{T}$. So let $B=Y Z$ and observe that $B^{T}=(Y Z)^{T}=Z^{T} Y^{T}$. Then

$$
(X Y Z)^{T}=(X B)^{T}=B^{T} X^{T}=Z^{T} Y^{T} X^{T}
$$

