SOLUTIONS

1. (a) Matrix A has 2 columns (\mathbf{u} and \mathbf{v}), each of which has 4 components, meaning A has 4 rows. Hence A is a 4×2 matrix. Matrix B has 2 rows (\mathbf{u}^{T} and \mathbf{v}^{T}), each of which has 4 components, meaning B has 4 columns. Hence B is a 2×4 matrix.
(b) Explicitly, we have

$$
A=\left[\begin{array}{cc}
4 & 2 \\
-1 & 0 \\
-1 & 2 \\
7 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccc}
4 & -1 & -1 & 7 \\
2 & 0 & 2 & 0
\end{array}\right]
$$

So:

- $a_{11}=4$ (the element in the first row, first column);
- a_{33} does not exist (A has three rows, but does not have three columns);
- $a_{42}=0$ (the element in the fourth row, second column);
- $b_{12}=-1$ (the element in the first row, second column);
- $b_{21}=2$ (the element in the second row, first column);
- b_{42} does not exist (B has two columns, but does not have four rows).

2. Let $A=\left[\begin{array}{cccc}4 & -3 & -1 & 1 \\ 0 & 6 & 0 & 2 \\ -1 & 5 & -1 & -\frac{7}{3}\end{array}\right], \mathbf{x}=\left[\begin{array}{l}w \\ x \\ y \\ z\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}5 \\ -3 \\ 0\end{array}\right]$ so then we can write the system as the matrix equation

$$
\left[\begin{array}{cccc}
4 & -3 & -1 & 1 \\
0 & 6 & 0 & 2 \\
-1 & 5 & -1 & -\frac{7}{3}
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3 \\
0
\end{array}\right] .
$$

3. Substituting A and B into the equation yields

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
2 & 0 & -4 \\
-1 & -1 & 7 \\
0 & 8 & 6
\end{array}\right]-4 X=\frac{1}{3}\left[\begin{array}{ccc}
2 & 1 & 3 \\
-2 & 6 & 0 \\
0 & -3 & 9
\end{array}\right]^{T}=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 0 \\
1 & 6 & -3 \\
3 & 0 & 9
\end{array}\right]=\left[\begin{array}{ccc}
\frac{2}{3} & -\frac{2}{3} & 0 \\
\frac{1}{3} & 2 & -1 \\
1 & 0 & 3
\end{array}\right]} \\
4 X
\end{array}\right)=\left[\begin{array}{ccc}
2 & 0 & -4 \\
-1 & -1 & 7 \\
0 & 8 & 6
\end{array}\right]-\left[\begin{array}{ccc}
\frac{2}{3} & -\frac{2}{3} & 0 \\
\frac{1}{3} & 2 & -1 \\
1 & 0 & 3
\end{array}\right]=\left[\begin{array}{ccc}
\frac{4}{3} & \frac{2}{3} & -4 \\
-\frac{4}{3} & -3 & 8 \\
-1 & 8 & 3
\end{array}\right] .
$$

4. (a) $A B$ cannot be computed because A has 2 columns while B has 3 rows.
(b) $B A=\left[\begin{array}{ccc}4 & 0 & -4 \\ 3 & -2 & 1 \\ -1 & -2 & 0\end{array}\right]\left[\begin{array}{cc}1 & 4 \\ -5 & 6 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}0 & 8 \\ 14 & 2 \\ 9 & -16\end{array}\right]$
(c) $A^{T} B=\left[\begin{array}{ccc}1 & -5 & 1 \\ 4 & 6 & 2\end{array}\right]\left[\begin{array}{ccc}4 & 0 & -4 \\ 3 & -2 & 1 \\ -1 & -2 & 0\end{array}\right]=\left[\begin{array}{ccc}-12 & 8 & -9 \\ 32 & -16 & -10\end{array}\right]$
(d) $A C=\left[\begin{array}{cc}1 & 4 \\ -5 & 6 \\ 1 & 2\end{array}\right]\left[\begin{array}{cccc}6 & 1 & 0 & -2 \\ 1 & \frac{3}{2} & 0 & -8\end{array}\right]=\left[\begin{array}{cccc}10 & 7 & 0 & -34 \\ -24 & 4 & 0 & -38 \\ 8 & 4 & 0 & -18\end{array}\right]$
(e) $C^{T} A^{T}=\left[\begin{array}{cc}6 & 1 \\ 1 & \frac{3}{2} \\ 0 & 0 \\ -2 & -8\end{array}\right]\left[\begin{array}{ccc}1 & -5 & 1 \\ 4 & 6 & 2\end{array}\right]=\left[\begin{array}{ccc}10 & -24 & 8 \\ 7 & 4 & 4 \\ 0 & 0 & 0 \\ -34 & -38 & -18\end{array}\right]$
(f) $\quad B^{2}=\left[\begin{array}{ccc}4 & 0 & -4 \\ 3 & -2 & 1 \\ -1 & -2 & 0\end{array}\right]\left[\begin{array}{ccc}4 & 0 & -4 \\ 3 & -2 & 1 \\ -1 & -2 & 0\end{array}\right]=\left[\begin{array}{ccc}20 & 8 & -16 \\ 5 & 2 & -14 \\ -10 & 4 & 2\end{array}\right]$
(g) C^{2} does not exist, because C has 4 columns but only 2 rows.
(h) $\quad B A C=(B A) C=\left[\begin{array}{cc}0 & 8 \\ 14 & 2 \\ 9 & -16\end{array}\right]\left[\begin{array}{cccc}6 & 1 & 0 & -2 \\ 1 & \frac{3}{2} & 0 & -8\end{array}\right]=\left[\begin{array}{cccc}8 & 12 & 0 & -64 \\ 86 & 17 & 0 & -44 \\ 38 & -15 & 0 & 110\end{array}\right]$
(i) $A C A$ does not exist because the matrix $A C$ is a 3×4 matrix, and hence has 4 columns, while A has 3 rows.
5. There are many such matrices. For example, let $A=\left[\begin{array}{ll}1 & -2 \\ 1 & -2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$. The important thing to note is that this means that if $A B=\mathbf{0}$ it does not necessarily mean that $A=\mathbf{0}$ or $B=\mathbf{0}$, unlike for real numbers!
6. We let

$$
\left[\begin{array}{c}
-10 \\
13 \\
-10
\end{array}\right]=x\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+y\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+z\left[\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right] .
$$

Then $4 x-y=-10, y+3 z=13$ and $-2 z=-10$. The last equation implies that $z=5$ and thus $y=13-3(5)=-2$, and $4 x=-2-10=-12$ so $x=-3$. Hence we can write

$$
\left[\begin{array}{c}
-10 \\
13 \\
-10
\end{array}\right]=-3\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]-2\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+5\left[\begin{array}{c}
0 \\
3 \\
-2
\end{array}\right]
$$

