SOLUTIONS

[3] 1. (a) The norm of \mathbf{u} is

$$
\|\mathbf{u}\|=\sqrt{2^{2}+(-3)^{2}+6^{2}}=\sqrt{49}=7 .
$$

Hence a unit vector in the direction of \mathbf{u} is

$$
\frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{7}\left[\begin{array}{c}
2 \\
-3 \\
6
\end{array}\right]
$$

and so a unit vector in the opposite direction to \mathbf{u} must be

$$
-\frac{1}{7}\left[\begin{array}{c}
2 \\
-3 \\
6
\end{array}\right]
$$

[3] (b) We know that

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)
$$

We have already found that $\|\mathbf{u}\|=7$, while

$$
\|\mathbf{v}\|=\sqrt{1^{2}+0^{2}+2^{2}}=\sqrt{5} \quad \text { and } \quad \mathbf{u} \cdot \mathbf{v}=2(1)+-3(0)+6(2)=14
$$

There

$$
14-7 \sqrt{5} \cos (\theta) \quad \Longrightarrow \quad \cos (\theta)=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}
$$

[5] (c) We must determine if there exist scalars k and ℓ such that $k \mathbf{u}+\ell \mathbf{v}=\mathbf{w}$, and thus

$$
\begin{aligned}
2 k+\ell & =1 \\
-3 k & =6 \\
6 k+2 \ell & =-2 .
\end{aligned}
$$

From the second equation, we immediately have $k=-2$. Substituting this into the first equation gives $-4+\ell=1$ so $\ell=5$. We must ensure that these values also satisfy the third equation, and so we have $6 k+2 \ell=6(-2)+2(5)=-2$ as required. Thus $k=-2$ and $\ell=5$ is a solution of the system, which means that $-2 \mathbf{u}+5 \mathbf{v}=\mathbf{w}$ and therefore \mathbf{w} lies in the plane spanned by \mathbf{u} and \mathbf{v}.
[3] (d) Such a normal is given by the cross product of the vectors:

$$
\mathbf{n}=\mathbf{u} \times \mathbf{v}=\left|\begin{array}{cc}
0 & 6 \\
2 & -2
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 1 \\
0 & 6
\end{array}\right| \mathbf{k}=-12 \mathbf{i}-(-4) \mathbf{j}+6 \mathbf{k}=\left[\begin{array}{c}
-12 \\
4 \\
6
\end{array}\right]
$$

[3] 2. (a) Since ℓ is perpendicular to π, the normal to π must be the direction vector of ℓ. Hence

$$
\mathbf{d}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

and so the equation of the line is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right]+t\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

[5] (b) The point Q must satisfy both the equation of the line and the equation of the plane. The parametric equations of the line indicate that $x=1+t, y=3+t$ and $z=6-2 t$. Substituting these into the equation of the plane, we have

$$
\begin{aligned}
(1+t)+(3+t)-2(6-2 t) & =4 \\
-8+6 t & =4 \\
t & =2
\end{aligned}
$$

Thus the point of intersection is $Q(3,5,2)$.
[6] (c) First we need a point in the plane, such as the point Q we found in part (b). Now we'll define \mathbf{u} to be the vector which starts at P and ends at Q so

$$
\mathbf{u}=\overrightarrow{P Q}=\left[\begin{array}{c}
3-(-4) \\
5-0 \\
2-2
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
0
\end{array}\right]
$$

Now we will project \mathbf{u} onto the normal \mathbf{n} of the plane to obtain the vector \mathbf{p} as follows:

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{n}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \mathbf{n}=\frac{7(1)+5(1)+0(-2)}{1^{2}+1^{2}+(-2)^{2}}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=\frac{12}{6}\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
2 \\
2 \\
-4
\end{array}\right] .
$$

Thus the distance from P to the plane is given by

$$
\|\mathbf{p}\|=\sqrt{2^{2}+2^{2}+(-4)^{2}}=\sqrt{24}=2 \sqrt{6} .
$$

3. We set $k_{1} \mathbf{u}+k_{2} \mathbf{v}+k_{3} \mathbf{w}=\mathbf{0}$ so

$$
\begin{array}{r}
k_{1}-3 k_{2}-k_{3}=0 \\
-5 k_{2}-k_{3}=0 \\
-5 k_{1}+2 k_{3}=0 \\
-4 k_{1}+8 k_{2}=0
\end{array}
$$

From the second and fourth equations we obtain $k_{3}=-5 k_{2}$ and $k_{1}=2 k_{2}$. Substituting these into the third equation yields

$$
-5\left(2 k_{2}\right)+2\left(-5 k_{2}\right)=0 \quad \Longrightarrow \quad-20 k_{2}=0 \quad \Longrightarrow \quad k_{2}=0
$$

and therefore $k_{1}=k_{3}=0$ as well. (We can check that these values satisfy the first equation, but of course the trivial solution is always a solution to this system.) This means that the only solution to the given system of equations is the trivial solution, and so these vectors are linearly independent.
[6] 4. (a) Vectors \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
(b) Vectors \mathbf{u} and \mathbf{v} are linearly independent if $k \mathbf{u}+\ell \mathbf{v}=\mathbf{0}$ implies that $k=\ell=0$.
(c) We set

$$
k \mathbf{u}+\ell \mathbf{v}=\mathbf{0}
$$

and we wish to show that this implies that $k=\ell=0$. We are given that $\mathbf{u} \cdot \mathbf{v}=0$ and that \mathbf{u} and \mathbf{v} are non-zero vectors. Taking the dot product with \mathbf{v} on both sides of the equation gives

$$
\begin{aligned}
(k \mathbf{u}+\ell \mathbf{v}) \cdot \mathbf{v} & =\mathbf{0} \cdot \mathbf{v} \\
k \mathbf{u} \cdot \mathbf{v}+\ell \mathbf{v} \cdot \mathbf{v} & =0 \\
k(0)+\ell\|\mathbf{v}\|^{2} & =0 \\
\ell\|\mathbf{v}\|^{2} & =0
\end{aligned}
$$

Since \mathbf{v} is a non-zero vector, $\|\mathbf{v}\| \neq 0$ and therefore it must be that $\ell=0$. Likewise, if we take the dot product with \mathbf{u} on both sides of the equation, we have

$$
\begin{aligned}
(k \mathbf{u}+\ell \mathbf{v}) \cdot \mathbf{u} & =\mathbf{0} \cdot \mathbf{v} \\
k \mathbf{u} \cdot \mathbf{u}+\ell \mathbf{v} \cdot \mathbf{u} & =0 \\
k\|\mathbf{u}\|^{2}+\ell(0) & =0 \\
k\|\mathbf{u}\|^{2} & =0
\end{aligned}
$$

and so $k=0$. Since it must be that $k=\ell=0$, we have proved that \mathbf{u} and \mathbf{v} are linearly independent.

