MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[5] 1. The vectors are parallel if

$$
\left[\begin{array}{c}
9 \\
x^{2} \\
2 x
\end{array}\right]=k\left[\begin{array}{c}
6 \\
24 \\
-8
\end{array}\right]
$$

for some scalar k. Thus we must have $9=6 k, x^{2}=24 k$ and $2 x=-8 k$. From the first equation, we immediately have $k=\frac{9}{6}=\frac{3}{2}$. Then, from the second equation, we must have

$$
x^{2}=24\left(\frac{3}{2}\right) \quad \Longrightarrow \quad x^{2}=36 \quad \Longrightarrow \quad x= \pm 6
$$

Finally, from the third equation, we must have

$$
2 x=-8\left(\frac{3}{2}\right) \quad \Longrightarrow \quad x=-6
$$

Since all three equations must be satisfied, the only such value of x is therefore $x=-6$.
[4] 2. We wish to express

$$
\left[\begin{array}{l}
5 \\
0
\end{array}\right]=a\left[\begin{array}{c}
7 \\
-1
\end{array}\right]+b\left[\begin{array}{c}
-3 \\
4
\end{array}\right]
$$

which gives us the system of equations

$$
\begin{aligned}
7 a-3 b & =5 \\
-a+4 b & =0
\end{aligned}
$$

One way to solve this system is to solve the second equation for a, giving $a=4 b$. Then we can substitute this into the first equation, yielding

$$
7(4 b)-3 b=5 \quad \Longrightarrow \quad 25 b=5 \quad \Longrightarrow \quad b=\frac{1}{5} \quad \Longrightarrow \quad a=\frac{4}{5}
$$

Hence

$$
\left[\begin{array}{l}
5 \\
0
\end{array}\right]=\frac{4}{5}\left[\begin{array}{c}
7 \\
-1
\end{array}\right]+\frac{1}{5}\left[\begin{array}{c}
-3 \\
4
\end{array}\right] .
$$

[5] 3. (a) We wish to express

$$
\left[\begin{array}{c}
4 \\
0 \\
-6
\end{array}\right]=a\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+b\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]+c\left[\begin{array}{c}
-5 \\
2 \\
-1
\end{array}\right] .
$$

This results in the system of equations

$$
\begin{aligned}
2 a-5 c & =4 \\
4 b+2 c & =0 \\
a+2 b-c & =-6 .
\end{aligned}
$$

One approach is to use the first and second equations to find

$$
a=2+\frac{5}{2} c \quad \text { and } \quad b=-\frac{1}{2} c .
$$

We can substitute both of these into the third equation, giving

$$
\left(2+\frac{5}{2} c\right)+2\left(-\frac{1}{2} c\right)-c=-6 \quad \Longrightarrow \quad \frac{1}{2} c=-8 \quad \Longrightarrow \quad c=-16 .
$$

Thus $a=-38$ and $b=8$. This means that $\left[\begin{array}{c}4 \\ 0 \\ -6\end{array}\right]$ is a linear combination of the vectors, and can be written

$$
\left[\begin{array}{c}
4 \\
0 \\
-6
\end{array}\right]=-38\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+8\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]-16\left[\begin{array}{c}
-5 \\
2 \\
-1
\end{array}\right]
$$

[5] (b) This time, we want to write

$$
\left[\begin{array}{c}
4 \\
0 \\
-6
\end{array}\right]=a\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]+b\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]+c\left[\begin{array}{c}
-6 \\
8 \\
1
\end{array}\right] .
$$

This results in the system of equations

$$
\begin{aligned}
2 a-6 c & =4 \\
4 b+8 c & =0 \\
a+2 b+c & =-6 .
\end{aligned}
$$

From the first and second equations we have

$$
a=2+3 c \quad \text { and } \quad b=-2 c
$$

We can substitute both of these into the third equation, giving

$$
(2+3 c)+2(-2 c)+c=-6 \quad \Longrightarrow \quad 2=-6,
$$

which is impossible. Thus there are no solutions to this system of equations, and therefore no scalars a, b and c which permit us to express $\left[\begin{array}{c}4 \\ 0 \\ -6\end{array}\right]$ as a linear combination of the given vectors.
[2] 4. (a) We have

$$
\overrightarrow{A B}=\left[\begin{array}{c}
4-1 \\
3-0 \\
-2-4
\end{array}\right]=\left[\begin{array}{c}
3 \\
3 \\
-6
\end{array}\right]
$$

[4] (b) Suppose C has coordinates (x, y, z), so that the vector

$$
\overrightarrow{A C}=\left[\begin{array}{l}
x-1 \\
y-0 \\
z-4
\end{array}\right]=\left[\begin{array}{c}
x-1 \\
y \\
z-4
\end{array}\right]
$$

We want

$$
\overrightarrow{A C}=\frac{1}{3} \overrightarrow{A B}=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

Thus we set

$$
\begin{aligned}
x-1 & =1 \\
y & =1 \\
z-4 & =-2
\end{aligned}
$$

so $x=2, y=1, z=2$. Hence C is the point $(2,1,2)$.
[3] 5. (a) Note that

$$
\|\mathbf{u}\|=\sqrt{(-1)^{2}+(-4)^{2}+8^{2}}=\sqrt{81}=9 .
$$

Thus a unit vector in the same direction as \mathbf{u} is

$$
\frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{9}\left[\begin{array}{c}
-1 \\
-4 \\
8
\end{array}\right]
$$

[2] (b) Since we have now found a unit vector in the direction of \mathbf{u}, a vector of length 6 in the opposite direction to \mathbf{u} is given by

$$
-6 \cdot \frac{1}{9}\left[\begin{array}{c}
-1 \\
-4 \\
8
\end{array}\right]=-\frac{2}{3}\left[\begin{array}{c}
-1 \\
-4 \\
8
\end{array}\right]
$$

[4] 6. We set

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =0 \\
3 x(2)+x(x)+(-1)(-x) & =0 \\
6 x+x^{2}+x & =0 \\
x^{2}+7 x & =0 \\
x(x+7) & =0
\end{aligned}
$$

so \mathbf{u} and \mathbf{v} are orthogonal when $x=0$ or $x=-7$.
[6] 7. We are given that $\|\mathbf{u}\|=1,\|\mathbf{v}\|=1$, and

$$
(\mathbf{u}-5 \mathbf{v}) \cdot(\mathbf{v}-3 \mathbf{u})=0
$$

Expanding the latter expression yields

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v}-5 \mathbf{v} \cdot \mathbf{v}-3 \mathbf{u} \cdot \mathbf{u}+15 \mathbf{v} \cdot \mathbf{u} & \\
\mathbf{u} \cdot \mathbf{v}-5\|\mathbf{v}\|^{2}-3\|\mathbf{u}\|^{2}+15 \mathbf{u} \cdot \mathbf{v} & =0 \\
16 \mathbf{u} \cdot \mathbf{v}-5(1)^{2}-3(1)^{2} & =0 \\
\mathbf{u} \cdot \mathbf{v} & =\frac{1}{2} .
\end{aligned}
$$

Since

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta)=(1)(1) \cos (\theta)=\cos (\theta)
$$

we now have $\cos (\theta)=\frac{1}{2}$ and so $\theta=\frac{\pi}{3}$.

