SOLUTIONS

1. First we want a unit vector $\tilde{\mathbf{u}}$ in the same direction as \mathbf{u}. This is

$$
\tilde{\mathbf{u}}=\frac{1}{\|\mathbf{u}\|} \mathbf{u}=\frac{1}{\sqrt{54}}\left[\begin{array}{c}
4 \\
-1 \\
-1 \\
6
\end{array}\right]
$$

and so a vector in the same direction as \mathbf{u} of length 4 must be

$$
4 \tilde{\mathbf{u}}=\frac{4}{\sqrt{54}}\left[\begin{array}{c}
4 \\
-1 \\
-1 \\
6
\end{array}\right]
$$

2. We have $\mathbf{u} \cdot \mathbf{v}=3,\|\underline{u}\|=5$ and $\|\underline{v}\|=10$ so

$$
\cos (\theta)=\frac{3}{50}
$$

so $\theta \approx 1.5$ radians or 86.6 degrees.
3. (a) We let

$$
k_{1} \mathbf{u}+k_{2} \mathbf{v}=k_{1}\left[\begin{array}{c}
-4 \\
1
\end{array}\right]+k_{2}\left[\begin{array}{l}
6 \\
7
\end{array}\right]=0
$$

so $-4 k_{1}+6 k_{2}=0$ and $k_{1}+7 k_{2}=0$. From the second equation we have $k_{1}=-7 k_{2}$ and substituting this into the first equation gives

$$
-4\left(-7 k_{2}\right)+6 k_{2}=34 k_{2}=0
$$

so $k_{2}=0$ and hence $k_{1}=0$. Thus only the trivial combination exists and so \mathbf{u} and \mathbf{v} are linearly independent.
(b) We let

$$
k_{1} \mathbf{u}+k_{2} \mathbf{v}+k_{3} \mathbf{w}=k_{1}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+k_{2}\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+k_{3}\left[\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right]=0
$$

so $2 k_{1}+3 k_{3}=0,5 k_{1}-k_{2}+2 k_{3}=0$ and $-k_{1}-k_{2}-4 k_{3}=0$. From the first equation we have $k_{3}=-\frac{2}{3} k_{1}$. Substituting this into the second equation gives

$$
5 k_{1}-k_{2}+2\left(-\frac{2}{3} k_{1}\right)=\frac{11}{3} k_{1}-k_{2}=0
$$

so $k_{2}=\frac{11}{3} k_{1}$. Substituting both of these into the third equation leads to

$$
-k_{1}-\frac{11}{3} k_{1}-4\left(-\frac{2}{3} k_{1}\right)=-2 k_{1}=0
$$

so $k_{1}=0$, and hence $k_{2}=0$ and $k_{3}=0$ also. Thus \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly independent.
(c) We let

$$
k_{1} \mathbf{u}+k_{2} \mathbf{v}+k_{3} \mathbf{w}=k_{1}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+k_{2}\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+k_{3}\left[\begin{array}{c}
2 \\
2 \\
-4
\end{array}\right]=0
$$

so $2 k_{1}+2 k_{3}=0,5 k_{1}-k_{2}+2 k_{3}=0$ and $-k_{1}-k_{2}-4 k_{3}=0$. From the first equation we have $k_{3}=-k_{1}$. Substituting this into the second equation gives

$$
5 k_{1}-k_{2}+2\left(-k_{1}\right)=3 k_{1}-k_{2}=0
$$

so $k_{2}=3 k_{1}$. Substituting both these into the third equation yields

$$
-k_{1}-3 k_{1}-4\left(-k_{1}\right)=0,
$$

which holds for any value of k_{1}. Hence we have an infinite number of solutions, such as $k_{1}=1, k_{2}=3, k_{3}=-1$. Therefore, \mathbf{u}, \mathbf{v} and \mathbf{w} are linearly dependent.
(d) We let

$$
k_{1} \mathbf{u}+k_{2} \mathbf{v}+k_{3} \mathbf{w}+k_{4} \mathbf{x}=k_{1}\left[\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right]+k_{2}\left[\begin{array}{c}
0 \\
-1 \\
-1
\end{array}\right]+k_{3}\left[\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right]+k_{4}\left[\begin{array}{c}
-4 \\
0 \\
6
\end{array}\right]=0
$$

so $2 k_{1}+3 k_{3}-4 k_{4}=0,5 k_{1}-k_{2}+2 k_{3}=0$ and $-k_{1}-k_{2}-4 k_{3}+6 k_{4}=0$. From the first equation, we have $k_{1}=2 k_{4}-\frac{3}{2} k_{3}$. Substituting this into the second equation gives

$$
5\left(2 k_{4}-\frac{3}{2} k_{3}\right)-k_{2}+2 k_{3}=10 k_{4}-\frac{11}{2} k_{3}-k_{2}=0
$$

so $k_{2}=10 k_{4}-\frac{11}{2} k_{3}$. Substituting both of these into the third equation gives

$$
-\left(2 k_{4}-\frac{3}{2} k_{3}\right)-\left(10 k_{4}-\frac{11}{2} k_{3}\right)-4 k_{3}+6 k_{4}=-6 k_{4}-3 k_{3}=0
$$

so $k_{3}=-\frac{1}{2} k_{4}$, where we have established no limitation on k_{4}. Thus there is an infinite number of solutions, such as $k_{4}=4, k_{3}=-2, k_{2}=51, k_{1}=11$ and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and \mathbf{x} are linearly dependent.
(e) We let

$$
k_{1} \mathbf{u}_{1}+k_{2} \mathbf{u}_{2}+k_{3} \mathbf{u}_{3}+k_{4} \mathbf{u}_{4}=k_{1}\left[\begin{array}{l}
5 \\
0 \\
1 \\
3
\end{array}\right]+k_{2}\left[\begin{array}{c}
1 \\
5 \\
-1 \\
-2
\end{array}\right]+k_{3}\left[\begin{array}{c}
-3 \\
6 \\
-1 \\
0
\end{array}\right]+k_{4}\left[\begin{array}{c}
2 \\
-2 \\
7 \\
0
\end{array}\right]=0
$$

so $5 k_{1}+k_{2}-3 k_{3}+2 k_{4}=0,5 k_{2}+6 k_{3}-2 k_{4}=0, k_{1}-k_{2}-k_{3}+7 k_{4}=0$ and $3 k_{1}-2 k_{2}=0$. From the fourth equation we have $k_{2}=\frac{3}{2} k_{1}$. From the third equation we have

$$
k_{1}-\frac{3}{2} k_{1}-k_{3}+7 k_{4}=-\frac{1}{2} k_{1}-k_{3}+7 k_{4}=0
$$

so $k_{3}=7 k_{4}-\frac{1}{2} k_{1}$. Substituting the value for k_{2} into the second equation yields

$$
5\left(\frac{3}{2} k_{1}\right)+6 k_{3}-2 k_{4}=\frac{15}{2} k_{1}+6 k_{3}-2 k_{4}=0
$$

so $k_{3}=\frac{1}{3} k_{4}-\frac{5}{4} k_{1}$. Setting these last two equations equal to each other, we have

$$
7 k_{4}-\frac{1}{2} k_{1}=\frac{1}{3} k_{4}-\frac{5}{4} k_{1} \quad \Longrightarrow \quad \frac{3}{4} k_{1}=-\frac{20}{3} k_{4} \quad \Longrightarrow \quad k_{4}=-\frac{9}{80} k_{1} .
$$

Finally, substituting all of this into the first equation, we have

$$
5 k_{1}+\frac{3}{2} k_{1}-3\left(-\frac{103}{80} k_{1}\right)+2\left(-\frac{9}{80} k_{1}\right)=\frac{811}{80} k_{1}=0 .
$$

Thus $k_{1}=0$, and so $k_{2}=0, k_{3}=0$ and finally $k_{4}=0$. So $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ and \mathbf{u}_{4} are linearly independent.
4. Let $\mathbf{u}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$. We assume that \mathbf{u} is orthogonal to every vector in \mathbb{R}^{n}; in particular, this means that it is orthogonal to itself so $\mathbf{u} \cdot \mathbf{u}=0$. But then

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=0
$$

But consider any real number z. We know that $z^{2}>0$ if $z \neq 0$, and $z^{2}=0$ if and only if $z=0$. If any $x_{i} \neq 0$ then the sum of the squares would have to be positive; thus it must be that $x_{i}=0$ for all i. Thus we have

$$
\mathbf{u}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=\mathbf{0}
$$

Alternatively, since \mathbf{u} is orthogonal to every vector in \mathbf{R}^{n}, it must be orthogonal to the standard basis vectors. But observe that

$$
\mathbf{u} \cdot \mathbf{e}_{1}=x_{1}(1)+x_{2}(0)+x_{3}(0)+\cdots+x_{n}(0)=x_{1},
$$

so $x_{1}=0$. Similarly, for all i,

$$
\mathbf{u} \cdot \mathbf{e}_{i}=x_{i}
$$

so $x_{i}=0$. Thus $\mathbf{u}=\mathbf{0}$.

