MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 1.4
Math 2050 Worksheet
Winter 2018

SOLUTIONS

1. Observe that

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}=3, \quad \mathbf{u} \cdot \mathbf{u}=42, \quad \mathbf{v}=14
$$

Then

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{3}{14}\left[\begin{array}{c}
-3 \\
-1 \\
-2
\end{array}\right] \quad \text { and } \quad \operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{3}{42}\left[\begin{array}{c}
1 \\
4 \\
-5
\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}
1 \\
4 \\
-5
\end{array}\right]
$$

2. Consider any point Q on the line, say, $Q(4,3,4)$. Then $\mathbf{u}=\overrightarrow{Q P}=\left[\begin{array}{l}-4 \\ -4 \\ -3\end{array}\right]$. We want the projection \mathbf{p} of \mathbf{u} onto the direction vector \mathbf{d} of the line:

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{d}} \mathbf{u}=\frac{-5}{10}\left[\begin{array}{c}
-1 \\
0 \\
3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
1 \\
0 \\
-3
\end{array}\right] .
$$

The distance from P to ℓ will be the length of $\mathbf{u}-\mathbf{p}$. So

$$
\mathbf{u}-\mathbf{p}=\frac{1}{2}\left[\begin{array}{l}
-9 \\
-8 \\
-3
\end{array}\right] \quad \Longrightarrow \quad\|\mathbf{u}-\mathbf{p}\|=\frac{1}{2} \sqrt{(-9)^{2}+(-8)^{2}+(-3)^{2}}=\frac{1}{2} \sqrt{154}
$$

3. (a) First we choose a point Q in the plane π, say, $Q(0,4,0)$. The vector \mathbf{u} from P to Q is $\mathbf{u}=\overrightarrow{P Q}=\left[\begin{array}{l}7 \\ 6 \\ 2\end{array}\right]$. A normal to the plane is $\mathbf{n}=\left[\begin{array}{c}-1 \\ 1 \\ -3\end{array}\right]$ and we project \mathbf{u} onto \mathbf{n} to obtain p:

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{n}} \mathbf{u}=-\frac{7}{11}\left[\begin{array}{c}
-1 \\
1 \\
-3
\end{array}\right]=\frac{7}{11}\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
$$

Then the distance from the point to π is

$$
\|\underline{p}\|=\frac{7}{11} \sqrt{1^{2}+(-1)^{2}+3^{2}}=\frac{7 \sqrt{11}}{11}
$$

(b) Let $R(x, y, z)$ be the point in π closest to P. Then R is the terminating point of the vector $\mathbf{p}=\overrightarrow{P R}$, and we have that

$$
\frac{7}{11}\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{l}
x+7 \\
y+2 \\
z+2
\end{array}\right]
$$

so $x=-\frac{70}{11}, y=-\frac{29}{11}$ and $z=-\frac{1}{11}$: the point closest to P is $\left(-\frac{70}{11},-\frac{29}{11},-\frac{1}{11}\right)$.
4. (a) Any vector in the plane will obey the equation $z=6 x-y$ so a vector $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is of the form

$$
\left[\begin{array}{c}
x \\
y \\
6 x-y
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
6
\end{array}\right]+y\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
$$

and so two vectors in the plane are $\mathbf{u}=\left[\begin{array}{l}1 \\ 0 \\ 6\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$. These are not orthogonal, but we can project \mathbf{u} onto \mathbf{v} to obtain the vector \mathbf{p} :

$$
\mathbf{p}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{-6}{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
3
\end{array}\right] \quad \Longrightarrow \quad \mathbf{u}-\mathbf{p}=\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]
$$

and this is orthogonal to \mathbf{v}.
(b) From part (a), two orthogonal vectors in the plane are $\mathbf{e}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{f}=\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]$. So then

$$
\operatorname{proj}_{\pi} \mathbf{w}=\frac{5}{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+\frac{33}{19}\left[\begin{array}{l}
1 \\
3 \\
3
\end{array}\right]=\frac{1}{38}\left[\begin{array}{c}
66 \\
293 \\
103
\end{array}\right] .
$$

