SOLUTIONS

1. (a) Observe that

$$
\|\mathbf{v}\|=\sqrt{(-1)^{2}+4^{2}+3^{2}}=\sqrt{26}
$$

so a unit vector in the direction of \mathbf{v} is

$$
\tilde{\mathbf{v}}=\frac{1}{\sqrt{26}} \mathbf{v}=\frac{1}{\sqrt{26}}\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]
$$

(b) Since the vector $\tilde{\mathbf{v}}$ found in (a) was a unit vector in the direction of \mathbf{v}, a vector of length 7 in the same direction will be

$$
7 \tilde{\mathbf{v}}=\frac{7}{\sqrt{26}} \mathbf{v}=\frac{7}{\sqrt{26}}\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]=\frac{1}{\sqrt{26}}\left[\begin{array}{c}
-7 \\
28 \\
21
\end{array}\right]
$$

(c) Since the vector $\tilde{\mathbf{v}}$ found in (a) was a unit vector in the direction of \mathbf{v}, a vector of length 4 in the opposite direction will be

$$
-4 \tilde{\mathbf{v}}=-\frac{4}{\sqrt{26}} \mathbf{v}=-\frac{4}{\sqrt{26}}\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]=\frac{1}{\sqrt{26}}\left[\begin{array}{c}
4 \\
-16 \\
-12
\end{array}\right]
$$

2. Observe that $\mathbf{u} \cdot \mathbf{v}=-3,\|\mathbf{u}\|=\sqrt{6}$ and $\|\mathbf{v}\|=\sqrt{2}$. So then

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \quad \Longrightarrow \quad \cos \theta=\frac{-3}{\sqrt{6} \sqrt{2}}=-\frac{\sqrt{3}}{2}
$$

and thus $\theta=\frac{5 \pi}{6}$.
3. (a) We expand and simplify:

$$
\begin{aligned}
(\mathbf{u}+5 \mathbf{w}) \cdot(3 \mathbf{v}-2 \mathbf{u}) & =3 \mathbf{u} \cdot \mathbf{v}+15 \mathbf{w} \cdot \mathbf{v}-2 \mathbf{u} \cdot \mathbf{u}-10 \mathbf{w} \cdot \mathbf{u} \\
& =3 \mathbf{u} \cdot \mathbf{v}+15 \mathbf{v} \cdot \mathbf{w}-2\|\mathbf{u}\|^{2}-10 \mathbf{u} \cdot \mathbf{w} \\
& =3(-3)+15(1)-2(4)-10(4) \\
& =-42
\end{aligned}
$$

(b) We have that

$$
\begin{aligned}
\|\mathbf{v}-\mathbf{w}\|^{2} & =(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w}) \\
& =\mathbf{v} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{w}-\mathbf{w} \cdot \mathbf{v}+\mathbf{w} \cdot \mathbf{w} \\
& =\|\mathbf{v}\|^{2}-2 \mathbf{v} \cdot \mathbf{w}+\|\mathbf{w}\|^{2} \\
& =36-2(1)+64 \\
& =98
\end{aligned}
$$

