SOLUTIONS

1. (a) Let $A=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $\left[\begin{array}{c}4-x \\ -4-y\end{array}\right]=\left[\begin{array}{c}3 \\ -7\end{array}\right]$ so $4-x=3$ implying $x=1$, and $-4-y=-7$, implying $y=3$. Hence $A=(1,3)$. A sketch appears below.

Figure 1: Question 1(a)

Figure 2: Question 1(b)
(b) Let $A=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $\left[\begin{array}{c}4-x \\ -4-y\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ so $4-x=2$ implying $x=2$, and $-4-y=0$, implying $y=-4$. Hence $A=(2,-4)$. A sketch appears above.
(c) Let $A=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $\left[\begin{array}{c}4-x \\ -4-y\end{array}\right]=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ so $4-x=-1$ implying $x=5$, and $-4-y=-1$, implying $y=-3$. Hence $A=(5,-3)$. A sketch appears below.

Figure 3: Question 1(c)

Figure 4: Question 1(d)
(d) Let $A=\left[\begin{array}{l}x \\ y\end{array}\right]$. Then $\left[\begin{array}{c}4-x \\ -4-y\end{array}\right]=\left[\begin{array}{c}4 \\ -4\end{array}\right]$ so $4-x=4$ implying $x=0$, and $-4-y=-4$, implying $y=0$. Hence $A=(0,0)$. A sketch appears above.
2. (a) $\left[\begin{array}{l}4 \\ 1\end{array}\right]+3\left[\begin{array}{c}-2 \\ 0\end{array}\right]-\left[\begin{array}{c}-6 \\ 7\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]+\left[\begin{array}{c}-6 \\ 0\end{array}\right]+\left[\begin{array}{c}6 \\ -7\end{array}\right]=\left[\begin{array}{c}4 \\ -6\end{array}\right]$
(b) $6\left[\begin{array}{c}-3 \\ 3 \\ -7\end{array}\right]-4\left[\begin{array}{c}0 \\ 5 \\ -1\end{array}\right]=\left[\begin{array}{c}-18 \\ 18 \\ -42\end{array}\right]+\left[\begin{array}{c}0 \\ -20 \\ 4\end{array}\right]=\left[\begin{array}{c}-18 \\ -2 \\ -38\end{array}\right]$
(c) $-k\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right]+3\left[\begin{array}{c}k \\ 1 \\ -2\end{array}\right]=\left[\begin{array}{c}4 k \\ 0 \\ -k\end{array}\right]+\left[\begin{array}{c}3 k \\ 3 \\ -6\end{array}\right]=\left[\begin{array}{c}7 k \\ 3 \\ -6-k\end{array}\right]$
3. (a) We want to find scalars a and b such that

$$
a\left[\begin{array}{l}
0 \\
1
\end{array}\right]+b\left[\begin{array}{l}
2 \\
9
\end{array}\right]=\left[\begin{array}{l}
1 \\
6
\end{array}\right] .
$$

Then we have $2 b=1$ and $a+9 b=6$. From the first equation, we obtain $b=\frac{1}{2}$; substitution of this into the second equation gives $a=6-\frac{9}{2}=\frac{3}{2}$. Hence

$$
\frac{3}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
2 \\
9
\end{array}\right]=\left[\begin{array}{l}
1 \\
6
\end{array}\right]
$$

(b) We want to find scalars a and b such that

$$
a\left[\begin{array}{l}
6 \\
4
\end{array}\right]+b\left[\begin{array}{c}
20 \\
-8
\end{array}\right]=\left[\begin{array}{l}
1 \\
6
\end{array}\right] .
$$

Then we have $6 a+20 b=1$ and $4 a-8 b=6$. The second equation implies $b=\frac{1}{2} a-\frac{3}{4}$, and substitution of this into the first equation gives

$$
6 a+20\left(\frac{1}{2} a-\frac{3}{4}\right)=1 \quad \Longrightarrow \quad 16 a=16
$$

so $a=1$, and therefore $b=\frac{1}{2}-\frac{3}{4}=-\frac{1}{4}$. Hence

$$
\left[\begin{array}{l}
6 \\
4
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
20 \\
-8
\end{array}\right]=\left[\begin{array}{l}
1 \\
6
\end{array}\right] .
$$

4. (a) We want to find scalars a, b and c such that

$$
a\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]+b\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]+c\left[\begin{array}{c}
6 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0 \\
6
\end{array}\right] .
$$

So then we have $4 a-b+6 c=-7, a+b=0$ and $3 a+b-2 c=6$. The second of these equations implies $b=-a$. Substituting this into the third equation yields $3 a-a-2 c=6$ so $c=a-3$. And substitution of both of these into the first equation gives

$$
4 a-(-a)+6(a-3)=-7 \quad \Longrightarrow \quad 11 a=11
$$

so $a=1$. Hence $b=-1$ and $c=-2$. Then we can write

$$
\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]-2\left[\begin{array}{c}
6 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0 \\
6
\end{array}\right] .
$$

(b) We want to find scalars a and b such that

$$
a\left[\begin{array}{c}
3 \\
-4 \\
3
\end{array}\right]+b\left[\begin{array}{c}
4 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0 \\
6
\end{array}\right] .
$$

Then we have $3 a+4 b=-7,-4 a-3 b=0$ and $3 a+2 b=6$. From the second equation, we get $b=-\frac{4}{3} a$. Substituting this into the first equation leads to

$$
3 a+4\left(-\frac{4}{3} a\right)=-7 \quad \Longrightarrow \quad-\frac{7}{3} a=-7
$$

and hence $a=3$. Thus we get $b=-\frac{4}{3}(3)=-4$. But while this satisfies the first two equations, we must also ensure that it satisfies the third: $3(3)+2(-4)=1 \neq 6$, and hence there is no solution - no such linear combination exists.
(c) We want to find scalars a and b such that

$$
a\left[\begin{array}{c}
1 \\
-5 \\
-3
\end{array}\right]+b\left[\begin{array}{l}
0 \\
7 \\
3
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0 \\
6
\end{array}\right]
$$

Then we have $a=-7,-5 a+7 b=0$, and $-3 a+3 b=6$. Substituting $a=-7$ into the second equation, we get

$$
-5(-7)+7 b=0 \quad \Longrightarrow \quad 7 b=-35
$$

so $b=-5$. Again, though, we need to make sure that this satisfies the last equation as well. But this time, $-3(-7)+3(-5)=6$, so we have shown that

$$
-7\left[\begin{array}{c}
1 \\
-5 \\
-3
\end{array}\right]-5\left[\begin{array}{l}
0 \\
7 \\
3
\end{array}\right]=\left[\begin{array}{c}
-7 \\
0 \\
6
\end{array}\right]
$$

5. (a) We are given that $a \mathbf{u}+b \mathbf{v}=\mathbf{w}$ for certain scalars a and b. We wish to find scalars c and d such that

$$
c(5 \mathbf{u})+d(-\mathbf{v})=\mathbf{w}
$$

But setting $a=5 c$ and $b=-d$, we see that $c=\frac{1}{5} a$ and $d=-b$ are precisely the scalars needed. Hence \mathbf{w} is a linear combination of $5 \mathbf{u}$ and $-\mathbf{v}$.
(b) We are given that $a \mathbf{u}+b \mathbf{v}=\mathbf{w}$ for certain scalars a and b. We wish to find scalars c and d such that

$$
c(k \mathbf{u})+d(\ell \mathbf{v})=\mathbf{w}
$$

But setting $a=c k$ and $b=d \ell$, we see that $c=\frac{1}{k} a$ and $d=\frac{1}{\ell} b$ are precisely the scalars needed (and both of these scalars exist because both k and ℓ are non-zero). Hence \mathbf{w} is a linear combination of $k \mathbf{u}$ and $\ell \mathbf{v}$.
6. (a) We assume that \mathbf{u} and \mathbf{v} are parallel, which means that there exists a non-zero scalar k such that $\mathbf{u}=k \mathbf{v}$. We want to find scalars a and b (not equal to zero) such that

$$
a \mathbf{u}+b \mathbf{v}=\mathbf{0}
$$

But then

$$
a \mathbf{u}+b \mathbf{v}=a(k \mathbf{v})+b \mathbf{v}=(a k+b) \mathbf{v}
$$

and if $a k+b=0$ then we will have $a \mathbf{u}+b \mathbf{v}=\mathbf{0}$. Hence we can choose $b=-a k$ and a to be any non-zero real number; then a and b are the desired non-zero scalars.
(b) We assume that there exist scalars a and b (not equal to zero) such that

$$
a \mathbf{u}+b \mathbf{v}=\mathbf{0}
$$

We wish to show that $\mathbf{u}=k \mathbf{v}$ for some non-zero scalar k. But we see that

$$
a \mathbf{u}=-b \mathbf{v} \quad \Longrightarrow \quad \mathbf{u}=-\frac{b}{a} \mathbf{v}
$$

so we can let $k=-\frac{b}{a}$ (which must be defined, since $a \neq 0$), and hence $\mathbf{u}=k \mathbf{v}$, that is, \mathbf{u} and \mathbf{v} are parallel.

