MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6

MATH 2050
Winter 2018

Due: Monday, March 12th, 2018. SHOW ALL WORK.

Note: You should complete the worksheets for Sections 2.4 and 2.5 before you work on this assignment.

1. Consider the system

$$
\left.\begin{array}{r}
2 x+3 y-4 z=7 \\
4 x+y+9 z=5 \\
5 y-17 z=9
\end{array}\right\}
$$

(a) Solve the corresponding homogeneous system of equations using Gaussian elimination and back-substitution.
(b) Show that the solution of the given system can be written in the form $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{h}$, where \mathbf{x}_{p} is a particular solution of the given system and \mathbf{x}_{h} is a solution of the corresponding homogeneous system.
2. Consider the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
4 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
1 \\
5 \\
-3
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
-4 \\
-3 \\
3
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{c}
2 \\
-2 \\
-1 \\
1
\end{array}\right]
$$

(a) Use Gaussian elimination and back-substitution to determine whether these vectors are linearly independent or linearly dependent.
(b) Consider the matrix A whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{v}_{4}. Explain how your answer to part (a) can be used to determine whether A is invertible.
3. For each of the following matrices, use Gaussian elimination to determine the inverse of the matrix or to show that the matrix is not invertible.
(a) $A=\left[\begin{array}{cccc}1 & 2 & 2 & 1 \\ -2 & -4 & -4 & 0 \\ 0 & 0 & -1 & 2 \\ 3 & 3 & 3 & 1\end{array}\right]$
(b) $B=\left[\begin{array}{cccc}1 & 2 & 2 & 0 \\ -2 & -4 & -4 & 0 \\ 0 & 0 & -1 & 2 \\ 3 & 3 & 3 & 1\end{array}\right]$
4. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-2 & -4 & -5 \\
2 & 1 & 0
\end{array}\right]
$$

Find A^{-1} and use it to solve the system of equations

$$
\left.\begin{array}{rl}
x-z & =-2 \\
-2 x-4 y-5 z & =7 \\
2 x+y & =-4
\end{array}\right\}
$$

5. Express $A=\left[\begin{array}{ccc}2 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 1 & 0\end{array}\right]$ as a product of elementary matrices.
