MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6

MATH 2050

WINTER 2018

Due: Monday, March 12th, 2018. SHOW ALL WORK.

Note: You should complete the worksheets for Sections 2.4 and 2.5 before you work on this assignment.

1. Consider the system

- (a) Solve the corresponding homogeneous system of equations using Gaussian elimination and back-substitution.
- (b) Show that the solution of the given system can be written in the form $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$, where \mathbf{x}_p is a particular solution of the given system and \mathbf{x}_h is a solution of the corresponding homogeneous system.
- 2. Consider the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\4\\-2 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 5\\1\\5\\-3 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 0\\-4\\-3\\3 \end{bmatrix}, \quad \mathbf{v}_{4} = \begin{bmatrix} 2\\-2\\-1\\1 \end{bmatrix},$$

- (a) Use Gaussian elimination and back-substitution to determine whether these vectors are linearly independent or linearly dependent.
- (b) Consider the matrix A whose columns are \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 and \mathbf{v}_4 . Explain how your answer to part (a) can be used to determine whether A is invertible.
- 3. For each of the following matrices, use Gaussian elimination to determine the inverse of the matrix or to show that the matrix is not invertible.

(a)
$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ -2 & -4 & -4 & 0 \\ 0 & 0 & -1 & 2 \\ 3 & 3 & 3 & 1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 1 & 2 & 2 & 0 \\ -2 & -4 & -4 & 0 \\ 0 & 0 & -1 & 2 \\ 3 & 3 & 3 & 1 \end{bmatrix}$$

PLEASE TURN OVER

4. Consider the matrix

$$A = \begin{bmatrix} 1 & 0 & -1 \\ -2 & -4 & -5 \\ 2 & 1 & 0 \end{bmatrix}.$$

Find A^{-1} and use it to solve the system of equations

$$\left. \begin{array}{ccc} x & - & z = -2 \\ -2x & -4y & -5z = 7 \\ 2x & +y & = -4. \end{array} \right\}$$

5. Express
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 3 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 as a product of elementary matrices.