MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 5
 MATH 2050
 Winter 2018

Due: Monday, March 5th, 2018. SHOW ALL WORK.
Note: You should complete the worksheet for Section 2.3 before you work on this assignment.

1. Solve each of the following systems of equations using Gaussian elimination and backsubstitution. If a solution exists, express it as a vector or a linear combination of vectors.
(a) $\left.\begin{array}{rl}x+4 z & =10 \\ 2 x-y-5 z & =-5 \\ -3 x+2 y+6 z & =0\end{array}\right\}$
(b) $\left.\begin{array}{rl}-x+4 z & =10 \\ 2 x-y-5 z & =-5 \\ -3 x+2 y+6 z & =0\end{array}\right\}$
(c) $\left.\begin{array}{rl}-x+4 z & =-10 \\ 2 x-y-5 z & =-5 \\ -3 x+2 y+6 z & =0\end{array}\right\}$

$$
3 w+12 x-6 y=-15
$$

(d) $2 w+8 x-y+3 z=-4$ $-w-4 x+6 y+4 z=13\}$
(e) $\left.\begin{array}{rl}w+2 x+y+2 z & =4 \\ 4 w-x+5 y & =2 \\ -7 w-3 x+5 y+4 z & =7 \\ 2 w+6 y+z & =-5\end{array}\right\}$
2. Use Gaussian elimination to determine whether the vector $\mathbf{b}=\left[\begin{array}{c}1 \\ -4 \\ 0 \\ 4\end{array}\right]$ is a linear combination of the columns of the matrix

$$
A=\left[\begin{array}{cccc}
1 & -2 & -1 & -3 \\
0 & 3 & 5 & -1 \\
1 & -1 & 0 & -6 \\
2 & 1 & 7 & -5
\end{array}\right]
$$

3. Given the system

$$
\left.\begin{array}{rl}
x+y+a z & =1 \\
x+2 y+b z & =2 \\
2 x+3 y & =c
\end{array}\right\}
$$

determine the conditions on a, b and c for which the system will have the indicated number of solutions, or explain why no such conditions are possible.
(a) a unique solution
(b) an infinite number of solutions
(c) no solutions

