MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 4
MATH 2050
Winter 2018

Due: Monday, February 26th, 2018. SHOW ALL WORK.
Note: You should complete the worksheets for Sections 2.1 and 2.2 before you work on this assignment.

1. Suppose $A=\left[\begin{array}{ccc}3 & 0 & -2 \\ 5 & -5 & 1 \\ 0 & -2 & 3\end{array}\right], B=\left[\begin{array}{cc}4 & 3 \\ -2 & 0 \\ 7 & -1\end{array}\right]$ and $C=\left[\begin{array}{ccc}-4 & -1 & 4 \\ -6 & 13 & 2 \\ 0 & 4 & -5\end{array}\right]$.
(a) Compute the products $A B, B A, B^{T} A, A^{2}, B^{2}$ and $B^{T} B$, if possible. If a product does not exist, explain why not.
(b) Solve the equation $\frac{1}{4} X-2 A=C^{T}$.
2. In general, matrix multiplication is not commutative; that is, given matrices A and B, $A B \neq B A$. However, prove that if A commutes with $A+B$ then A must commute with B.
3. Suppose $A=\left[\begin{array}{cc}3 & -1 \\ 9 & 6\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$.
(a) Write the equation $A \mathbf{x}=\mathbf{b}$ as a system of linear equations.
(b) Find A^{-1} and use it to solve the equation.
(c) Use your result from part (b) to write \mathbf{b} as a linear combination of the columns of A.
(d) Explain why we would not be able to use the method of part (b) to solve the equation $Z \mathbf{x}=\mathbf{b}$ where $Z=\left[\begin{array}{cc}3 & -2 \\ -9 & 6\end{array}\right]$. Use another method to write \mathbf{b} as a linear combination of the columns of Z.
4. Solve the matrix equation $A X+4 B=C$ for the 2×3 matrix X, given

$$
A=\left[\begin{array}{cc}
4 & 1 \\
-3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-2 & 1 & 7 \\
0 & 1 & -5
\end{array}\right], \quad C=\left[\begin{array}{ccc}
3 & 4 & 3 \\
-9 & 7 & 1
\end{array}\right] .
$$

5. Suppose A and B are invertible matrices such that

$$
B A^{-1} X^{T} B=B A^{T}
$$

Find an expression for X in terms of A and B.

