MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 3

MATH 2050

WINTER 2018

Due: Monday, February 5th, 2018. SHOW ALL WORK.

Note: You should complete the worksheets for Sections 1.4 and 1.5 before you work on this assignment.

- 1. Consider the vectors $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$.
 - (a) Find the projection of \mathbf{u} onto \mathbf{v} .
 - (b) Find the projection of \mathbf{v} onto \mathbf{u} .
- 2. Consider the plane π with equation x 2y + 3z = 0.
 - (a) Find two orthogonal vectors which span π .
 - (b) Find the projection of the vector $\mathbf{t} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ onto π .
- 3. Consider the plane π with equation y 3z = 7. Find the point in π which is closest to the point P(-2, 1, -4).
- 4. Consider the line ℓ with vector equation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ -4 \end{bmatrix} + t \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}.$$

Find the distance from the origin to ℓ .

5. Given

$$\mathbf{u} = \begin{bmatrix} 2\\7\\-3\\4 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 5\\-1\\5\\4 \end{bmatrix}$$

find all values of k, if any, such that **u** is orthogonal to $\mathbf{u} + k\mathbf{v}$.

6. Determine whether each of the following sets of vectors is linearly independent or linearly dependent.

(a)
$$\mathbf{u}_{1} = \begin{bmatrix} 5\\-3\\9 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} -6\\-2\\-1 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} -3\\1\\-4 \end{bmatrix}$$

(b) $\mathbf{u}_{1} = \begin{bmatrix} 5\\0\\-2\\8 \end{bmatrix}, \mathbf{u}_{2} = \begin{bmatrix} 0\\3\\2\\0 \end{bmatrix}, \mathbf{u}_{3} = \begin{bmatrix} -1\\-4\\2\\0 \end{bmatrix}, \mathbf{u}_{4} = \begin{bmatrix} 2\\-4\\1\\3 \end{bmatrix}$