MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 2
MATH 2050
Winter 2018

Due: Monday, January 29th, 2018. SHOW ALL WORK.

Note: You should complete the worksheet for Section 1.3 before you work on this assignment.

1. Consider the line ℓ with vector equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
-7 \\
5
\end{array}\right]+t\left[\begin{array}{c}
3 \\
4 \\
-1
\end{array}\right] .
$$

Find the equation of the plane which is perpendicular to ℓ and passes through the point $P(1,-2,-9)$.
2. Find an equation of the plane containing the points $A(3,0,1), B(-2,-2,0)$ and $C(3,-4,-3)$.
3. Find the vector and parametric equations of the line through the points $A(-7,1,2)$ and $B(-2,5,5)$.
4. For each of the following pairs of lines, find their point of intersection or show that none exists.
(a) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ -5 \\ 2\end{array}\right]+t\left[\begin{array}{c}-6 \\ 1 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ 11 \\ -6\end{array}\right]+t\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$
(b) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ -5 \\ 2\end{array}\right]+t\left[\begin{array}{c}-6 \\ 2 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ 11 \\ -6\end{array}\right]+t\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$
(c) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ -5 \\ 2\end{array}\right]+t\left[\begin{array}{c}-6 \\ 2 \\ 4\end{array}\right]$ and $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}0 \\ 11 \\ -6\end{array}\right]+t\left[\begin{array}{c}3 \\ -1 \\ -2\end{array}\right]$
5. Consider the planes with equations $x-y+3 z=1$ and $x-2 y+3 z=1$.
(a) Show that the point $(-5,0,2)$ lies in both planes.
(b) Find the vector equation of the line along which the two planes intersect.
6. Find the point of intersection of the line

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
6
\end{array}\right]+t\left[\begin{array}{c}
1 \\
4 \\
-3
\end{array}\right]
$$

with the plane $5 x-2 y-z=3$ or show that none exists.

