Please remember that each final exam is different, and the style and emphasis of the questions will vary from semester to semester.

1. Let
$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$.

- [3] (a) Find a unit vector in the opposite direction to **u**.
- [4] (b) Find the exact angle between \mathbf{u} and \mathbf{v} .
- [4] (c) Find all k such that $\mathbf{u} + k\mathbf{v}$ is orthogonal to $\mathbf{u} k\mathbf{v}$.
 - 2. Consider the plane π which passes through the points A(1, -1, 2), B(-2, 2, 2), C(-1, 0, 1).
- [5] (a) Find the equation of the plane π .
- [5] (b) Find an equation of the line ℓ which passes through the point D(2,3,4) and which is orthogonal to π . Determine the point at which it intersects with π .
 - (c) Find the distance from the point P(3, 2, 1) to π , and find the point Q in the plane which is closest to P.

[5] 3. Find the matrix A, given
$$\left(A^T - 3 \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}\right)^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
.

[6] 4. Find conditions on the constant k such that the system

has

[6]

- (a) an infinite number of solutions
- (b) no solutions
- (c) a unique solution
- [6] 5. (a) Consider the following system of linear equations:

Use Gaussian elimination to express the solution as a vector or as a linear combination of vectors.

[2] (b) Using your answer to part (a), determine the solution of the corresponding homogeneous system of equations:

$$\begin{cases} x_1 - x_2 + 2x_4 + x_5 = 0 \\ -2x_1 + 2x_2 + x_3 - 4x_4 = 0 \\ x_1 - x_2 + x_3 + 3x_4 + x_5 = 0. \end{cases}$$

$$[2] \qquad (c) Write \begin{bmatrix} 2 \\ -7 \\ -1 \end{bmatrix} as a linear combination of $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_4 = \begin{bmatrix} 2 \\ -4 \\ 3 \end{bmatrix}, and \mathbf{v}_5 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$$

[2] (d) Are the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , \mathbf{v}_5 linearly dependent or linearly independent? Explain.

[6] 6. (a) Use Gaussian elimination to find the inverse of the matrix $A = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix}$. [4] (b) Using your results from part (a), solve the matrix equation

[4] (b) Using your results from part (a), solve the matrix equation

$$\begin{bmatrix} -1 & 2 & -3\\ 2 & 1 & 0\\ 4 & -2 & 5 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}.$$

[5] 7. Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$. Factor A as a product of elementary matrices.

[5] 8. (a) Find det(A), given
$$A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 2 & 0 & 0 & 4 \\ 3 & -1 & 2 & 0 \\ 0 & -4 & 3 & -2 \end{bmatrix}$$
.

[4] (b) Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B = \begin{bmatrix} a+c & 2c \\ b+d & 2d \end{bmatrix}$. If det $(A) = 2$, find det $(A^2B^TA^{-1})$.

9. Let
$$A = \begin{bmatrix} -2 & 1 \\ 4 & 1 \end{bmatrix}$$
.

- [3] (a) Find the characteristic polynomial of A, and then determine the eigenvalues of A.
- [4] (b) For each eigenvalue of A, finding a corresponding eigenvector.
- [3] (c) Identify an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$, or explain why this is not possible.

- [4] 10. Find the eigenvalues λ_1 and λ_2 of the matrix $A = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$. Simplify the expressions $\frac{\lambda_1}{\lambda_2}$ and $\frac{\lambda_2}{\lambda_1}$.
- [4] 11. (a) Let π be a plane spanned by vectors **e** and **f**. Prove that if a vector **v** is orthogonal to both **e** and **f** then it is orthogonal to every vector in π .
- [4] (b) If $E^2 = E$ and A = I 2E, show that $A^{-1} = A$.
- [4] (c) Let A be a square matrix with eigenvalue λ . Prove that if $A^2 = I$ then $\lambda = 1$ or $\lambda = -1$.