Please remember that each final exam is different, and the style and emphasis of the questions will vary from semester to semester.

1. Let $\mathbf{u}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.
[3] (a) Find a unit vector in the opposite direction to \mathbf{u}.
[4] (b) Find the exact angle between \mathbf{u} and \mathbf{v}.
(c) Find all k such that $\mathbf{u}+k \mathbf{v}$ is orthogonal to $\mathbf{u}-k \mathbf{v}$.
2. Consider the plane π which passes through the points $A(1,-1,2), B(-2,2,2), C(-1,0,1)$.
[5] (a) Find the equation of the plane π.
[5] (b) Find an equation of the line ℓ which passes through the point $D(2,3,4)$ and which is orthogonal to π. Determine the point at which it intersects with π.
[6] (c) Find the distance from the point $P(3,2,1)$ to π, and find the point Q in the plane which is closest to P.
[5] 3. Find the matrix A, given $\left(A^{T}-3\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]\right)^{-1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$.
[6] 4. Find conditions on the constant k such that the system

$$
\left.\begin{array}{rl}
y+2 k z & =0 \\
x+2 y+6 z & =2 \\
k x & +2 z
\end{array}\right\}
$$

has
(a) an infinite number of solutions
(b) no solutions
(c) a unique solution
[6] 5. (a) Consider the following system of linear equations:

Use Gaussian elimination to express the solution as a vector or as a linear combination of vectors.
[2] (b) Using your answer to part (a), determine the solution of the corresponding homogeneous system of equations:
(c) Write $\left[\begin{array}{c}2 \\ -7 \\ -1\end{array}\right]$ as a linear combination of $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}2 \\ -4 \\ 3\end{array}\right]$, and $\mathbf{v}_{5}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
[2] (d) Are the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}$ linearly dependent or linearly independent? Explain.
[6] 6. (a) Use Gaussian elimination to find the inverse of the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5\end{array}\right]$.
[4] (b) Using your results from part (a), solve the matrix equation

$$
\left[\begin{array}{ccc}
-1 & 2 & -3 \\
2 & 1 & 0 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

[5] 7. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$. Factor A as a product of elementary matrices.
[5] 8. (a) Find $\operatorname{det}(A)$, given $A=\left[\begin{array}{cccc}1 & 2 & -2 & 1 \\ 2 & 0 & 0 & 4 \\ 3 & -1 & 2 & 0 \\ 0 & -4 & 3 & -2\end{array}\right]$.
[4] (b) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}a+c & 2 c \\ b+d & 2 d\end{array}\right]$. If $\operatorname{det}(A)=2$, find $\operatorname{det}\left(A^{2} B^{T} A^{-1}\right)$.
9. Let $A=\left[\begin{array}{cc}-2 & 1 \\ 4 & 1\end{array}\right]$.
[3] (a) Find the characteristic polynomial of A, and then determine the eigenvalues of A.
[4] (b) For each eigenvalue of A, finding a corresponding eigenvector.
[3] (c) Identify an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$, or explain why this is not possible.
[4] 10. Find the eigenvalues λ_{1} and λ_{2} of the matrix $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right]$. Simplify the expressions $\frac{\lambda_{1}}{\lambda_{2}}$ and $\frac{\lambda_{2}}{\lambda_{1}}$.
[4] 11. (a) Let π be a plane spanned by vectors \mathbf{e} and \mathbf{f}. Prove that if a vector \mathbf{v} is orthogonal to both \mathbf{e} and \mathbf{f} then it is orthogonal to every vector in π.
[4] (b) If $E^{2}=E$ and $A=I-2 E$, show that $A^{-1}=A$.
[4] (c) Let A be a square matrix with eigenvalue λ. Prove that if $A^{2}=I$ then $\lambda=1$ or $\lambda=-1$.

