MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.6	Math 2000 Worksheet	WINTER 2020

For practice only. Not to be submitted.

- 1. Compute $\int f(x,y) dx$ and $\int f(x,y) dy$ for each of the following functions.
 - (a) $f(x,y) = \frac{y}{x^2 + y^2}$ (b) $f(x,y) = xy \ln(x)$
- 2. Evaluate each of the following iterated integrals over rectangles.

(a)
$$\int_{0}^{\pi} \int_{0}^{4} y \cos\left(\frac{x}{4}\right) dy dx$$

(b) $\int_{-2}^{1} \int_{0}^{6} \frac{4y+3}{7-x} dx dy$
(c) $\int_{1}^{5} \int_{0}^{\frac{\pi}{4}} 3y^{2} \sec^{2}(x) dx dy$

3. Evaluate
$$\iint_{R} (x^2 - xy + y^3 - 4) dA$$
 where $R : [-1, 2] \times [-2, 1]$.

4. Compute the area V of the region which lies under the surface $z = \frac{x^2}{\sqrt{9-y^2}}$ and above the rectangle $R: [-3,3] \times [0,\frac{3}{2}]$.