MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.4	Math 2000 Worksheet	WINTER 2020
-------------	---------------------	-------------

For practice only. Not to be submitted.

- Use the Chain Rule to find dz/dt given z = x ln(x + 2y), x = sin(t), y = cos(t).
 Use the Chain Rule to find ∂z/∂x and ∂z/∂y given z = sin(u) tan(v), u = 3x + y, v = x y.
 Use the Chain Rule to find ∂w/∂r and ∂w/∂θ given w = xz/√(1-y^2), x = r^2, y = cos(θ), z = e^{4rθ}.
 Differentiate implicitly to find dy/dx given sin(x) + cos(y) = 7 + sin(x) cos(y).
- 5. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ where

$$x^2 - \sqrt{y} + z^2 = 2xyz.$$

6. Differentiate implicitly to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ where

$$\sin^2(x)\cos(z) = \tan(z) + \sec(x)\csc(y).$$