MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.3	Math 2000 Worksheet	WINTER	2020
Section 2.3	Math 2000 Worksheet	WINTER	2020

For practice only. Not to be submitted.

- 1. Find all the first-order partial derivatives for each of the following functions.
 - (a) $z = \sin(x)\cos(y)$ (b) $f(x,y) = y^x$ (c) $f(s,t) = \arctan\left(\frac{s^2}{t^2}\right)$ (d) $z = \cos(3x - 5y)$ at the point $\left(\frac{\pi}{6}, \frac{\pi}{15}, \frac{\sqrt{2}}{2}\right)$ (e) $w = xy^2z^3$
 - (f) $f(x, y, z) = \frac{6xy}{\sqrt{25 z^2}}$ at the point (1, 2, 4, 4).
- 2. Find all the second-order partial derivatives of $f(x, y) = xye^{y}$. Does Clairault's Theorem hold for this function?
- 3. Consider the function $z = e^{3x} \sin(5y)$. Find the third-order partial derivatives z_{xxy} , z_{yxx} , z_{yxy} and z_{yyx} . Are your results consistent with Clairault's Theorem?
- 4. Determine which of the following functions are solutions of Laplace's equation.
 - (a) $f(x, y) = x^2 y^2$ (b) $f(x, y) = x^2 + y^2$ (c) $f(x, y) = \ln[(x^2 + y^2)^2]$ (d) $f(x, y) = e^{-x} \cos(y) - e^{-y} \cos(x)$
- 5. Show that $u = \sin(kx)\sin(\alpha kt)$ is a solution of the wave equation

$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2},$$

where α and k are constants.

6. Show that $f(x,y) = xe^y + ye^x$ is a solution of the partial differential equation

$$f_{xxx}(x,y) + f_{yyy}(x,y) = x f_{xyy}(x,y) + y f_{xxy}(x,y).$$