MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 1.1	Math 2000 Worksheet	WINTER	2020
DECTION 1.1	Math 2000 Worksheet	WINTER	2020

For practice only. Not to be submitted.

1. Simplify each of the following.

(a)
$$\frac{(2i)!}{2 \cdot 4 \cdot 6 \cdots (2i)}$$

(b) $\frac{2 \cdot 4 \cdot 6 \cdots (2i)}{5 \cdot 10 \cdot 15 \cdots (5i)}$

2. Write the first five terms of the sequence defined by each of the following general terms a_i .

(a)
$$a_i = \frac{\sin\left(\frac{i\pi}{2}\right)}{i^2}$$

(b) $a_i = (-1)^{i+1} \frac{1+i}{i!}$
(c) $a_1 = 4, \ a_{i+1} = \frac{a_i}{a_i+2}$

3. Given the sequences

$$\{a_i\} = \{2i\} = \{2, 4, 6, 8, 10, \ldots\}$$
 and $\{b_i\} = \{2^i\} = \{2, 4, 8, 16, 32, \ldots\}$

find the formula for each of the following sequences and write the first five terms.

- (a) $\{a_i\} \{b_i\}$ (b) $4\{b_i\}$ (c) $\{a_i\} \cdot \{b_i\}$ (d) $\frac{\{b_i\}}{\{a_i\}}$
- 4. Find a formula, indexed from i = 1, for the general term a_i of each of the following sequences (assuming that the pattern of the first few terms continues).
 - (a) $\left\{ \frac{1}{8}, \frac{2}{27}, \frac{3}{64}, \frac{4}{125}, \dots \right\}$ (b) $\{-3, 8, -13, 18, \dots\}$ (c) $\{10, 2, 10, 2, \dots\}$