MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

TEST 1

MATHEMATICS 2000

February 12th, 2020

Name

MUN Number

1. Find the limit of each sequence $\{a_i\}$, or explain why it diverges. [13]

(a)
$$a_i = \frac{2i^3(i-5)}{(3i^2-4)(3i^2+4)}$$

(b) $a_i = \frac{\sin^2(i)}{5^i}$
(c) $a_i = \frac{\ln(\ln(i))}{\sqrt{i}}$

2. Based on your results for #1(a), can anything be determined about whether the series $\sum_{i=1}^{\infty} \frac{2i^3(i-5)}{(3i^2-4)(3i^2+4)}$ converges or diverges? Justify your answer. [3]

[6] 3. Use the Bounded Monotonic Sequence Theorem to show that $\{a_i\}$ is convergent, where

$$a_i = \frac{4(i-1)!}{1 \cdot 5 \cdot 9 \cdots (4i-3)}.$$

[4] 4. Find the sum of the convergent series $\sum_{i=0}^{\infty} \frac{3^i - 4^i}{3^i 4^i}$.

[4] 5. Find and sketch the domain of the function $f(x,y) = \frac{\sqrt{y-x}}{x+3}$.

[5] 6. Evaluate $\lim_{(x,y)\to(0,0)} \frac{12x^4y}{x^6+3y^3}$ or show that the limit does not exist.

[5] 7. Find all the first- and second-order partial derivatives of $z = x \ln(x) \sin(5y)$.