[13] 1. Find the limit of each sequence $\left\{a_{i}\right\}$, or explain why it diverges.
(a) $a_{i}=\frac{2 i^{3}(i-5)}{\left(3 i^{2}-4\right)\left(3 i^{2}+4\right)}$
(b) $a_{i}=\frac{\sin ^{2}(i)}{5^{i}}$
(c) $a_{i}=\frac{\ln (\ln (i))}{\sqrt{i}}$
[3] 2. Based on your results for $\# 1(a)$, can anything be determined about whether the series $\sum_{i=1}^{\infty} \frac{2 i^{3}(i-5)}{\left(3 i^{2}-4\right)\left(3 i^{2}+4\right)}$ converges or diverges? Justify your answer.
[6] 3. Use the Bounded Monotonic Sequence Theorem to show that $\left\{a_{i}\right\}$ is convergent, where

$$
a_{i}=\frac{4(i-1)!}{1 \cdot 5 \cdot 9 \cdots(4 i-3)} .
$$

[4] 4. Find the sum of the convergent series $\sum_{i=0}^{\infty} \frac{3^{i}-4^{i}}{3^{i} 4^{i}}$.
[4] 5. Find and sketch the domain of the function $f(x, y)=\frac{\sqrt{y-x}}{x+3}$.
[5] 6. Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{12 x^{4} y}{x^{6}+3 y^{3}}$ or show that the limit does not exist.
[5] 7. Find all the first- and second-order partial derivatives of $z=x \ln (x) \sin (5 y)$.

