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SECTION 2.7 Math 2000 Worksheet WINTER 2020

SOLUTIONS

1. (a) We may integrate with respect to x and y in either order, for instance:
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(b) We can write
D={(z,y)|0<x<3,0<y <z}

Then the integral becomes
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(b) We have

1y 1 y? 1 y?
/ / 5 i S drdy = / P arctan (E)} dy = / [arctan (f)} dy
0 0 T +y 0 Yy Yy 0 0 Yy 0
1 1 1
= / arctan(y) dy = {y arctan(y) — 5 In|1 + y2|]
0 0

T 1
=———In(2
4 2 ( )7
where the latter integral can be evaluated using integration by parts.

(c) We have
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where the second integral can be evaluated using u-substitution.



(d) We have
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where again we may use u-substitution to evaluate the final integral.

3. (a) The region of integration can be written as 0 < y < x and 0 < x < /m. Hence the

integral becomes
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(b) The region of integration can be written as 0 < x < vy and 0 <y < 9. Hence the

integral becomes
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(c) The region of integration can be written as 0 < y < 2z and 0 < z < 2. Hence the

integral becomes
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d) The region of integration can be written as 0 < x < sin(y) and 0 < y < Z. Hence the
2

integral becomes
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4. (a) First we need to solve for the points of intersection of the two curves. We set

P’ 4+2r=24—12" = 2@+4)(z-3)=0



so ¢ = —4 or x = 3. Then the region D is bounded by —4 < 2 < 3 and 2% + 2z <y <
24 — 2% (The order of the latter inequality may be easily checked by graphing, or by
substitution of a value of z in the interval (—4, 3), such as = 0.) Then we have
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(b) Again we begin by solving for the points of intersection. First we note that y =9 — 3z
can also be written as x = 3 — %y. Then we have
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Then we have
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