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SOLUTIONS

1. (a) We may integrate with respect to x and y in either order, for instance:∫∫
D

1√
16− x2

dA =

∫ 2

−2

∫ 7

0

1√
16− x2

dy dx =

∫ 2

−2

[
y√

16− x2

]7
0

dx

=

∫ 2

−2

7√
16− x2

dx =
[
7 arcsin

(x
4

)]2
−2

=
7π

3
.

(b) We can write
D = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ x}.

Then the integral becomes∫∫
D

1√
16− x2

dA =

∫ 3

0

∫ x

0

1√
16− x2

dy dx =

∫ 3

0

[
y√

16− x2

]x
0

=

∫ 3

0

x√
16− x2

dx

=
[
−
√

16− x2
]3
0

= 4−
√

7.

2. (a)

∫ 4

2

∫ √y
1

x(y2 − 5y) dx dy =

∫ 4

2

[
x2(y2 − 5y)

]√y
1
dy =

∫ 4

2

1

2
(y2 − 5y)(y − 1) dy

=

∫ 4

2

[
1

2
y3 − 3y2 +

5

2
y

]
dy =

[
1

8
y4 − y3 +

5

4
y2
]4
2

= −11

(b) We have∫ 1

0

∫ y2

0

y

x2 + y2
dx dy =

∫ 1

0

[
y

y
arctan

(
x

y

)]y2
0

dy =

∫ 1

0

[
arctan

(
x

y

)]y2
0

dy

=

∫ 1

0

arctan(y) dy =

[
y arctan(y)− 1

2
ln|1 + y2|

]1
0

=
π

4
− 1

2
ln(2),

where the latter integral can be evaluated using integration by parts.

(c) We have∫ 4√10

1

∫ x

0

y2
√
x4 − 1 dy dx =

∫ 4√10

1

[
1

3
y3
√
x4 − 1

]x
0

dx =

∫ 4√10

1

[
1

3
x3
√
x4 − 1

]
dx

=

[
1

18
(x4 − 1)

3
2

] 4√10

1

=
3

2
,

where the second integral can be evaluated using u-substitution.
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(d) We have ∫ 0

π
2

∫ sin(x)

0

ecos(x) dy dx =

∫ 0

π
2

[
yecos(x)

]sin(x)
0

dx =

∫ 0

π
2

sin(x)ecos(x) dx

=
[
−ecos(x)

]0
π
2

= 1− e,

where again we may use u-substitution to evaluate the final integral.

3. (a) The region of integration can be written as 0 ≤ y ≤ x and 0 ≤ x ≤
√
π. Hence the

integral becomes∫ √π
0

∫ x

0

sin(x2) dy dx =

∫ √π
0

[
y sin(x2)

]x
0
dx =

∫ √π
0

x sin(x2) dx

=

[
−1

2
cos(x2)

]√π
0

= 1.

(b) The region of integration can be written as 0 ≤ x ≤ √y and 0 ≤ y ≤ 9. Hence the
integral becomes∫ 9

0

∫ √y
0

xey
2

dx dy =

∫ 9

0

[
1

2
x2ey

2

]√y
0

dy =

∫ 9

0

1

2
yey

2

dy =

[
1

4
ey

2

]9
0

=
1

4
e81 − 1

4
.

(c) The region of integration can be written as 0 ≤ y ≤ 2x and 0 ≤ x ≤ 2. Hence the
integral becomes∫ 2

0

∫ 2x

0

y

x3 + 1
dy dx =

∫ 2

0

[
y2

2(x3 + 1)

]2x
0

dx =

∫ 2

0

2x2

x3 + 1
dx

=

[
2

3
ln |x3 + 1|

]2
0

=
4

3
ln(3).

(d) The region of integration can be written as 0 ≤ x ≤ sin(y) and 0 ≤ y ≤ π
2
. Hence the

integral becomes∫ π
2

0

∫ sin(y)

0

√
1 + cos(y) dx dy =

∫ π
2

0

[
x
√

1 + cos(y)
]sin(y)
0

dy

=

∫ π
2

0

sin(y)
√

1 + cos(y) dy

=

[
−2

3
[1 + cos(y)]

3
2

]π
2

0

=
4
√

2− 2

3
.

4. (a) First we need to solve for the points of intersection of the two curves. We set

x2 + 2x = 24− x2 =⇒ 2(x+ 4)(x− 3) = 0
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so x = −4 or x = 3. Then the region D is bounded by −4 ≤ x ≤ 3 and x2 + 2x ≤ y ≤
24 − x2. (The order of the latter inequality may be easily checked by graphing, or by
substitution of a value of x in the interval (−4, 3), such as x = 0.) Then we have

A =

∫∫
D

dA =

∫ 3

−4

∫ 24−x2

x2+2x

dy dx

=

∫ 3

−4

[
y
]24−x2
x2+2x

dx

=

∫ 3

−4
[24− 2x− 2x2] dx

=

[
24x− x2 − 2

3
x3
]3
−4

=
343

3
.

(b) Again we begin by solving for the points of intersection. First we note that y = 9− 3x
can also be written as x = 3− 1

3
y. Then we have

√
9− y = 3− 1

3
y =⇒ 9− y = 9− 2y +

1

9
y2 =⇒ y

(
1

9
y − 1

)
= 0

so y = 0 or y = 9. Thus the region R is defined by 0 ≤ y ≤ 9 and 3− 1
3
y ≤ x ≤

√
9− y.

Then we have

A =

∫∫
R

dA =

∫ 9

0

∫ √9−y
1
3
y

dx dy

=

∫ 9

0

[
x
]√9−y

1
3
y

dy

=

∫ 9

0

[√
9− y − 1

3
y

]
dy

=

[
−2

3
(9− y)

3
2 − 1

6
y2
]9
0

=
9

2
.


