MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 2.5

Math 2000 Worksheet
Winter 2020

SOLUTIONS

1. (a) The first-order partial derivatives are

$$
f_{x}(x, y)=2 x-y \quad \text { and } \quad f_{y}(x, y)=2 y-x-3
$$

Setting the first of these equal to zero yields $y=2 x$. Substituting this into the second equation gives

$$
3+x-2(2 x)=0 \quad \Longrightarrow \quad 3 x=3
$$

and so $x=1$ (and $y=2$). Thus $(1,2)$ is the only critical point.
Next we have

$$
f_{x x}(x, y)=2, \quad f_{y y}(x, y)=2, \quad f_{x y}(x, y)=-1
$$

so the discriminant is

$$
D=f_{x x}(1,2) f_{y y}(1,2)-\left[f_{x y}(1,2)\right]^{2}=4-1=3>0
$$

Since $f_{x x}(1,2)=2>0$, then, $(1,2)$ is a relative minimum.
(b) This time the first-order partial derivatives are

$$
f_{x}(x, y)=3 x^{2}+6 y-6 \quad \text { and } \quad f_{y}(x, y)=-12 y+6 x
$$

If $f_{y}(x, y)=0$ then $x=2 y$. Thus, setting $f_{x}(x, y)=0$ and using this result, we have

$$
3(2 y)^{2}+6 y-6=0 \quad \Longrightarrow \quad 12 y^{2}+6 y-6=0 \quad \Longrightarrow \quad 2 y^{2}+y-1=0
$$

so $(2 y-1)(y+1)=0$. Hence $y=\frac{1}{2}$ (so $x=1$) or $y=-1$ (so $x=-2$). This provides us with two critical points: $\left(1, \frac{1}{2}\right)$ and $(-2,-1)$.
Next, the second-order partial derivatives are

$$
f_{x x}(x, y)=6 x, \quad f_{y y}(x, y)=-12, \quad f_{x y}(x, y)=6
$$

At $\left(1, \frac{1}{2}\right)$ the discriminant is

$$
D=f_{x x}\left(1, \frac{1}{2}\right) f_{y y}\left(1, \frac{1}{2}\right)-\left[f_{x y}\left(1, \frac{1}{2}\right)\right]^{2}=-72-36=-100<0
$$

so this is a saddle point.
At $(-2,-1)$ the discriminant is

$$
D=f_{x x}(-2,-1) f_{y y}(-2,-1)-\left[f_{x y}(-2,-1)\right]^{2}=144-36=108>0
$$

and since $f_{x x}(-2,-1)=-12<0$, this is a relative maximum.
(c) First we find the first-order partial derivatives:

$$
f_{x}(x, y)=6 x^{5}-6 y \quad \text { and } \quad f_{y}(x, y)=6 y^{5}-6 x
$$

Setting the first of these equal to zero gives $6 x^{5}-6 y=0$ so $y=x^{5}$ and so we obtain from the second equation $6\left(x^{5}\right)^{5}-6 x=6 x^{25}-6 x=6 x\left(x^{24}-1\right)=0$ so $x=0$ (and $y=0$), $x=1$ (and $y=1$), or $x=-1$ (and $y=-1$), giving us three critical points: $(0,0),(1,1)$ and $(-1,-1)$.
To determine the nature of each of these critical points, we require the second derivatives:

$$
f_{x x}(x, y)=30 x^{4}, \quad f_{y y}(x, y)=30 y^{4}, \quad f_{x y}(x, y)=-6
$$

For $(0,0)$ this gives

$$
D=f_{x x}(0,0) f_{y y}(0,0)-\left[f_{x y}(0,0)\right]^{2}=0-36=-36<0
$$

so $(x, y)=(0,0)$ is a saddle point. For $(1,1)$ we have

$$
D=f_{x x}(1,1) f_{y y}(1,1)-\left[f_{x y}(1,1)\right]^{2}=900-36=864>0
$$

and since $f_{x x}(1,1)=30>0,(x, y)=(1,1)$ is a relative minimum. For $(-1,-1)$, we also get

$$
D=f_{x x}(-1,-1) f_{y y}(-1,-1)-\left[f_{x y}(-1,-1)\right]^{2}=900-36=864>0
$$

with $f_{x x}(-1,-1)=30>0$, so $(x, y)=(-1,-1)$ is also a relative minimum.
(d) We again begin by computing the first-order partial derivatives:

$$
f_{x}(x, y)=3 x^{2} y^{2}-36 x \quad \text { and } \quad f_{y}(x, y)=2 x^{3} y-54 y
$$

Setting the latter equal to zero gives $2 y\left(x^{3}-27\right)=0$ and hence either $y=0$ or $x=3$. If $y=0$, setting $f_{x}(x, y)=0$ implies $-36 x=0$ so $x=0$. By the same process, if $x=3$, we get $27 y^{2}-108=0$ so $y^{2}=4$ and either $y=2$ or $y=-2$. Thus the three critical points are $(0,0),(3,2)$ and $(3,-2)$.
The second derivatives are

$$
f_{x x}(x, y)=6 x y^{2}-36, \quad f_{y y}(x, y)=2 x^{3}-54, \quad f_{x y}(x, y)=6 x^{2} y
$$

For $(0,0)$ we have

$$
D=f_{x x}(0,0) f_{y y}(0,0)-\left[f_{x y}(0,0)\right]^{2}=(-36)(-54)-0=1944>0
$$

and since $f_{x x}(x, y)=-36<0,(x, y)=(0,0)$ is a relative maximum. For $(3,2)$ we have

$$
D=f_{x x}(3,2) f_{y y}(3,2)-\left[f_{x y}(3,2)\right]^{2}=(36)(0)-(108)^{2}=-11664<0
$$

so $(x, y)=(3,2)$ is a saddle point. For $(3,-2)$, we also get

$$
D=f_{x x}(3,-2) f_{y y}(3,-2)-\left[f_{x y}(3,-2)\right]^{2}=(36)(0)-(108)^{2}=-11664<0
$$

so $(x, y)=(3,-2)$ is another saddle point.

