MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

1. (a) $\frac{\partial z}{\partial x}=\cos (x) \cos (y) \quad \frac{\partial z}{\partial y}=-\sin (x) \sin (y)$
(b) $f_{x}(x, y)=y^{x} \ln (y) \quad f_{y}(x, y)=x y^{x-1}$
(c)

$$
\begin{aligned}
& \frac{\partial f(s, t)}{\partial s}=\frac{1}{1+\left(\frac{s^{2}}{t^{2}}\right)^{2}}\left(\frac{2 s}{t^{2}}\right)=\frac{2 s t^{2}}{s^{4}+t^{4}} \\
& \frac{\partial f(s, t)}{\partial t}=\frac{1}{1+\left(\frac{s^{2}}{t^{2}}\right)^{2}}\left(-\frac{2 s^{2}}{t^{3}}\right)=-\frac{2 s^{2} t}{s^{4}+t^{4}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& z_{x}(x, y)=-3 \sin (3 x-5 y) \quad \Longrightarrow \quad z_{x}\left(\frac{\pi}{6}, \frac{\pi}{15}\right)=-3 \sin \left(\frac{\pi}{2}-\frac{\pi}{3}\right)=-3 \sin \left(\frac{\pi}{6}\right)=-\frac{3}{2} \\
& z_{y}(x, y)=5 \sin (3 x-5 y) \quad \Longrightarrow \quad z_{y}\left(\frac{\pi}{6}, \frac{\pi}{15}\right)=5 \sin \left(\frac{\pi}{2}-\frac{\pi}{3}\right)=5 \sin \left(\frac{\pi}{6}\right)=\frac{5}{2}
\end{aligned}
$$

(e) $\frac{\partial w}{\partial x}=y^{2} z^{3} \quad \frac{\partial w}{\partial y}=2 x y z^{3} \quad \frac{\partial w}{\partial z}=3 x y^{2} z^{2}$
(f)

$$
\begin{aligned}
& f_{x}(x, y, z)=\frac{6 y}{\sqrt{25-z^{2}}} \quad \Longrightarrow \quad f_{x}(1,2,4)=4 \\
& f_{y}(x, y, z)=\frac{6 x}{\sqrt{25-z^{2}}} \quad \Longrightarrow \quad f_{y}(1,2,4)=2 \\
& f_{z}(x, y, z)=\frac{6 x y z}{\left(25-z^{2}\right)^{\frac{3}{2}}} \quad \Longrightarrow \quad f_{z}(1,2,4)=\frac{16}{9}
\end{aligned}
$$

2. We have

$$
\begin{array}{ll}
f_{x}(x, y)=y e^{y} & f_{y}(x, y)=x e^{y}+x y e^{y} \\
f_{x x}(x, y)=0 & f_{x y}(x, y)=e^{y}+y e^{y} \\
f_{y x}(x, y)=e^{y}+y e^{y} & f_{y y}(x, y)=x e^{y}+x e^{y}+x y e^{y}=2 x e^{y}+x y e^{y}
\end{array}
$$

Since $f_{x y}(x, y)=f_{y x}(x, y)$, Clairaut's Theorem is satisfied.
3. We have

$$
\begin{array}{ll}
z_{x}=3 e^{3 x} \sin (5 y) & z_{y}=5 e^{3 x} \cos (5 y) \\
z_{x x}=9 e^{3 x} \sin (5 y) & z_{x x y}=45 e^{3 x} \cos (5 y) \\
z_{y x}=15 e^{3 x} \cos (5 y) & z_{y x x}=45 e^{3 x} \cos (5 y) \\
& z_{y x y}=-75 e^{3 x} \sin (5 y) \\
z_{y y}=-25 e^{3 x} \sin (5 y) & z_{y y x}=-75 e^{3 x} \sin (5 y) .
\end{array}
$$

These results are consistent with Clairault's Theorem, because as long as we differentiate the same number of times by the same variables, the partial derivatives are equal; that is, $z_{x x y}=z_{y x x}$ and $z_{y x y}=z_{y y x}$.
4. (a) We have

$$
\begin{array}{ll}
f_{x}(x, y)=2 x & f_{y}(x, y)=-2 y \\
f_{x x}(x, y)=2 & f_{y y}(x, y)=-2
\end{array}
$$

so

$$
f_{x x}(x, y)+f_{y y}(x, y)=2-2=0
$$

and so this is a solution to Laplace's equation.
(b) We have

$$
\begin{array}{ll}
f_{x}(x, y)=2 x & f_{y}(x, y)=2 y \\
f_{x x}(x, y)=2 & f_{y y}(x, y)=2
\end{array}
$$

so

$$
f_{x x}(x, y)+f_{y y}(x, y)=2+2=4 \neq 0,
$$

and hence this is not a solution to Laplace's equation.
(c) We have

$$
\begin{array}{ll}
f_{x}(x, y)=\frac{4 x}{x^{2}+y^{2}} & f_{y}(x, y)=\frac{4 y}{x^{2}+y^{2}} \\
f_{x x}(x, y)=\frac{4 y^{2}-4 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} & f_{y y}(x, y)=\frac{4 x^{2}-4 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{array}
$$

so

$$
f_{x x}(x, y)+f_{y y}(x, y)=\frac{4 y^{2}-4 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{4 x^{2}-4 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

and so this is a solution to Laplace's equation.
(d) We have

$$
\begin{aligned}
f_{x}(x, y) & =-e^{-x} \cos (y)+e^{-y} \sin (x) \\
f_{y}(x, y) & =-e^{-x} \sin (y)+e^{-y} \cos (x) \\
f_{x x}(x, y) & =e^{-x} \cos (y)+e^{-y} \cos (x) \\
f_{y y}(x, y) & =-e^{-x} \cos (y)-e^{-y} \cos (x)
\end{aligned}
$$

so

$$
f_{x x}(x, y)+f_{y y}(x, y)=e^{-x} \cos (y)+e^{-y} \cos (x)-e^{-x} \cos (y)-e^{-y} \cos (x)=0
$$

and so this is a solution to Laplace's equation.
5. We have

$$
\begin{array}{llrl}
\frac{\partial u}{\partial x} & =k \cos (k x) \sin (\alpha k t) & \frac{\partial u}{\partial t} & =\alpha k \sin (k x) \cos (\alpha k t) \\
\frac{\partial^{2} u}{\partial x^{2}} & =-k^{2} \sin (k x) \sin (\alpha k t) & \frac{\partial^{2} u}{\partial t^{2}} & =-\alpha^{2} k^{2} \sin (k x) \sin (\alpha k t)
\end{array}
$$

so

$$
\frac{\partial^{2} u}{\partial t^{2}}=-\alpha^{2} k^{2} \sin (k x) \sin (\alpha k t)=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

as desired.
6. We have

$$
\begin{array}{lll}
f_{x}(x, y)=e^{y}+y e^{x} & f_{y}(x, y)=x e^{y}+e^{x} & f_{x x}(x, y)=y e^{x} \\
f_{x y}(x, y)=e^{y}+e^{x} & f_{y y}(x, y)=x e^{y} & f_{x x x}(x, y)=y e^{x} \\
f_{x x y}(x, y)=e^{x} & f_{x y y}(x, y)=e^{y} & f_{y y y}(x, y)=x e^{y}
\end{array}
$$

so

$$
f_{x x x}(x, y)+f_{y y y}(x, y)=y e^{x}+x e^{y}=y f_{x x y}(x, y)+x f_{x y y}(x, y)
$$

as desired.

