MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 2.1

Math 2000 Worksheet
Winter 2020

SOLUTIONS

1. (a) $f(4,7)=\frac{\sqrt{1}}{7-3}=\frac{2}{4}=\frac{1}{2}$
(b) $f(4,-7)=\frac{\sqrt{4}}{-7-3}=\frac{2}{-10}=-\frac{1}{5}$
(c) $f(-4,7)=\frac{\sqrt{-4}}{7-3}$ which is undefined, because we cannot take the square root of a negative number
(d) $f(3,1)=\frac{\sqrt{3}}{1-3}=-\frac{\sqrt{3}}{2}$
(e) $f(1,3)=\frac{\sqrt{1}}{3-3}=\frac{1}{0}$ which is undefined, because we cannot divide by zero
(f) $f(0,0)=\frac{\sqrt{0}}{0-3}=\frac{0}{-3}=0$
(g) $f(9,9)=\frac{\sqrt{9}}{9-3}=\frac{3}{6}=\frac{1}{2}$
2. (a) We require $x+y \geq 0$, or $y \geq-x$. Hence the domain is the set of all points lying on or above the line $y=-x$.
(b) We require $x \geq 0$ and $y \geq 0$, so the domain is the set of all points lying in the first quadrant of the $x y$-plane (including the axes).
(c) We require $x y-3 \neq 0$, so $y \neq \frac{3}{x}$. Hence the domain is the set of all points not lying on the hyperbola with the equation $y=\frac{3}{x}$.
(d) We require $16-x^{2}-y^{2} \geq 0$ so $x^{2}+y^{2} \leq 16$, which is the interior of the circle of radius 4 centred at the origin (including the circle). We further require $x^{2}+y^{2}-1>0$ so $x^{2}+y^{2}>1$, which is the exterior of the circle of radius 1 centred at the origin (excluding the circle). So the domain of the function is the set of points outside the circle of radius 1 but inside the circle of radius 4 (including this latter circle).
