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1. (a)

SOLUTIONS

First we find the radius of convergence; we use the Ratio Test with
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so the radius of convergence is R = % = 1. Hence the series converges for all = such that
|z — 2| < 1, that is, for -1 <z —2 < 1lor 1l < 2z < 3. Now we check the endpoints.
When z = 3, the given series becomes
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which is convergent by the Alternating Series Test. When z = 1, the given series becomes
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which is divergent by Limit Comparison with the harmonic series. So the interval of
convergence is (1, 3].

The given series is
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so differentiating it yields
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The radius of convergence is the same as in part (a), namely, R = 1 so this series also
converges for 1 < x < 3 and we again need to check the endpoints. When = = 3, the
differentiated series becomes
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which diverges by the Divergence Test. When = = 1, it becomes
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which also diverges by the Divergence Test. So the interval of convergence this time is

(1,3).
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Integrating the given series
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for some constant C' which will not affect the interval of convergence. Again, the radius

of convergence must be R = 1 giving convergence for 1 < x < 3, and so we check the

endpoints. For x = 3, the integrated series becomes
S
—~ (1+1)
which converges by the Alternating Series Test. For x = 1, it becomes
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which converges by comparison (Limit or Direct) with the convergent p-series E -
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Hence the interval of convergence is [1, 3].

We write
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which will converge for all |—%£C‘ < 1, that is, for —1 < %x <1or —% <z < ;Z.
Observe that if we set f(z) = = then
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This certainly converges for |z| < 1, but because we have differentiated, we must check
the endpoints. At x = 1, the differentiated series becomes
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which diverges by the Divergence Test. At x = —1, the differentiated series becomes

oo

> (1R - 1)

1=2

which also diverges by the Divergence Test. So the interval of convergence remains
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Note first that
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To solve for the constant C', we observe that when = = 0, In(5z + 1) = In(1) = 0.
Substituting this into the series, we see that C' = 0 as well. Thus
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We are guaranteed convergence for |—5z| < 1, that is, for —1 < 5z < 1 or —% <z < %
We check the endpoints. For z = % the integrated series becomes
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which converges by the Alternating Series Test. For x = —%, it becomes
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which diverges (try Limit Comparison with the harmonic series). So the interval of
convergence is (—l l}.
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Observe that
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This converges for |—z?*| < 1, that is, for —1 < x < 1. As usual, we check the endpoints.
At x = 1, the differentiated series becomes
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which diverges by the Divergence Test. At xz = —1, the differentiated series becomes
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which also diverges by the Divergence Test. Hence the interval of convergence is still
(—1,1).



