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SOLUTIONS

We use the Ratio Test with
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Hence the radius of convergence is R = = = 1, and so the power series converges for
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which converges by the Alternating
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We use the Root Test with k; = —. Then
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So the radius of convergence is R = oo and the interval of convergence must be R.
We use the Ratio Test with
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So the radius of convergence is R = % = 1 and the series converges for all x such that
v — 4| < 1, that is, for =1 < 2 —4 < 1 or 3 < z < 5. We check the endpoints
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z = 3 and x = 5. For x = 5 the series becomes Z
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becomes Z # which converges by the Alternating Series Test. Hence the interval
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of convergence is [3, 5].
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We use the Ratio Test with
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Then the radius of convergence is R = % = 4 and the series converges for all = such that
|x + 7] < 4, that is, for —4 < 2+ 7 < 4 or —11 < = < —3. We check the endpoints
r = —11 and x = —3. For x = —3, the series becomes
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which diverges (try the Limit Comparison Test with the harmonic series). For x = —11,

the series becomes
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which converges by the Alternating Series Test. Hence the interval of convergence is
[—11,-3).

Note that the starting index is ¢ = 2, but this will affect only the sum of the power series
(were we able to find it), not its convergence properties. We use the Ratio Test with

ki =1In(i) so ki1 =In(i+1).

Then
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This is an 2 indeterminate form so we let f(z) = % and use L’Hospital Rule:
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Hence the radius of convergence is R = % = 1 and the series converges for all |z| < 1,
that is, for —1 < x < 1. We check the endpoints + = +1. For z = 1, the series
o

becomes Z In(7) which diverges by the Divergence Test. For z = —1, the series becomes
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We use the Ratio Test with
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So the radius of convergence is R = 0 and therefore the interval of convergence consists
of only the centre of the power series, x = 12.

First we need to write the series as
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Now we can use the Ratio Test with
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SOR:%—%. The series converges for allxsuchthat‘a:— |<— that is, f0r0<x<—
We check the endpoints x = 0 and x = % For x = %, the series becomes

Note that the factors in the numerator are all larger than the factors in the denominator

and so
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Thus the series diverges by the Divergence Test. Similarly, the series obtained for z = 0,
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also diverges by the Divergence Test and thus the interval of convergence is (0, %)



(h) We must use the Ratio Test from first principles, given the power of 2i. We have
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The power series will converge if
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Hence the radius of convergence is R = 2. At x = the power series becomes
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which diverges by the Divergence Test. Similarly, at x = %, the power series becomes
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so it also diverges. Hence the interval of convergence is (32, %)



