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1. (a)

SOLUTIONS
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We use the Direct Comparison Test with the convergent p-series Z = (recalling that
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multiplying by the constant 5 doesn’t affect the convergence of the series). Then for
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so the given series converges as well.
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We use the Direct Comparison Test with the harmonic series g —, which is divergent.
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We have for i > 2,
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and so the given series also diverges.
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We use the Limit Comparison Test with the convergent p-series E <
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so the given series converges as well.

oo 5 1
We use the Direct Comparison Test with the divergent geometric series Z (Z) . For
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Hence the given series is divergent.
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(e) We use the Limit Comparison Test with the convergent geometric series Z <—> =
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so the given series is convergent.
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We use the Limit Comparison Test with the (divergent) harmonic series Z -
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so the given series diverges.
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We use the Direct Comparison Test with the convergent p-series Z - = Z ——. Then
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fori > 1,
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so the given series is convergent.
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We use the Limit Comparison Test with the divergent geometric series Z 20
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so the given series diverges too.

First note that
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so every factor % < 1. Hence we can conclude that
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Since E — Is a convergent p-series, by the Direct Comparison Test, the given series
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converges as well.



