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SOLUTIONS

1. (a) We have
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(b) Note that this series has i = 3 as its first index, so
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2. (a) We have

so the Divergence Test yields no conclusion.
(b) We have
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so by the Divergence Test, this series is divergent.

(c) We have
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so we can draw no conclusion from the Divergence Test.



(d)
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so by the Divergence Test, this series is divergent.

3. First note that a; = s; = 3. For n > 1, we simply have
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4. (a) Decomposing into partial fractions gives
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Then we observe that this is a telescoping series with
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Again, this is a telescoping series, with
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Therefore, the series diverges.

Decomposing into partial fractions gives
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Then we observe that this is a telescoping series with
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The pattern here is slightly more complicated: given any three consecutive parenthetical
groupings, the term in the middle with a coefficient of —2 is cancelled out by the combi-
nation of the last term in the preceding group and the first term in the following group.
For instance, in the terms listed above, the —% in the second group is cancelled out by
the +— in the first group and the +— in the third group. Studying this carefully, We see

that the only terms Wthh fail to Cancel out Completely in this manner are the T —= from
the ﬁrst group, the from the second group, the from the second-last group, and the
—= —|— —~ from the last group. Therefore, we can erte
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First we need to rewrite the given series as
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This is a geometric series with r = %, SO
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Rewriting gives
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Both of these series are geometric; the first has r = % and the second has r = % So then
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Rewriting gives -
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which is a geometric series with r = % Then
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Rewriting gives
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which is a geometric series with » = —0.2. Then
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Rewriting gives
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which is a geometric series with r = ‘%6. For this to converge, we require
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For these values of z,
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This is a geometric series with r = sin(x). It will converge when
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where k is an integer. For such values of z,
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First observe that
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which is a geometric series with 7 = ==, Then
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(b) We can write
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8. On the first bounce, the ball reaches a height of 1(0.6) = 0.6. On the second bounce, the
ball reaches a height of (0.6)(0.6) = (0.6)?>. On the third bounce, the ball reaches a height
of (0.6%)(0.6) = (0.6)3. Continuing in this manner, it’s clear that on the ball’s ith bounce, it
reaches a height of (0.6)". On each bounce, the ball travels up to its maximum height and
then back down to the ground, for a distance travelled on the ith bounce of 2(0.6)". Not
forgetting the initial 1 metre drop, then, the ball’s total distance travelled is
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So the ball travels a total of 4 metres.



