MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECtions 2.8 \& 2.9

Math 2000 Worksheet
FALL 2018

For practice only. Not to be submitted.

1. Evaluate the following double integrals by rewriting them in polar coordinates.
(a) $\int_{-4}^{4} \int_{0}^{\sqrt{16-y^{2}}} \sqrt{x^{2}+y^{2}+9} d x d y$
(b) $\iint_{D} \sqrt{x^{2}+y^{2}} d A$ where D is the region inside the circle $x^{2}+(y-1)^{2}=1$
(c) $\iint_{D} \frac{y^{2}}{x^{2}} d A$ where D is the part of the annulus (ring) $9 \leq x^{2}+y^{2} \leq 25$ lying in the first quadrant and below the line $y=x$
2. Use a double integral in either Cartesian or polar coordinates to find the volume of each solid.
(a) the solid bounded above by the curve $f(x, y)=1-x y$, below by the $x y$-plane, and whose cross-section is the region bounded by the curves $y=x$ and $y=x^{2}$
(b) the solid under the paraboloid $z=3 x^{2}+y^{2}$, above the $x y$-plane, and whose cross-section is the region bounded by the curves $y=x$ and $x=y^{2}-y$
(c) the solid bounded by the surface $z=x y$, the cylinders $y=x^{2}$ and $x=y^{2}$, and the plane $z=0$
(d) the solid that lies under the cone $z=\sqrt{x^{2}+y^{2}}$, above the $x y$-plane, and whose cross section is the annulus $4 \leq x^{2}+y^{2} \leq 25$
(e) the solid under the surface $z=1+x y$, above the $x y$-plane, and whose cross-section is the triangle with vertices $(1,1),(4,1)$ and $(3,2)$
(f) the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane
