SECTION 2.3

Math 2000 Worksheet
FALL 2018

For practice only. Not to be submitted.

1. Find all the first-order partial derivatives for each of the following functions.
(a) $z=\sin (x) \cos (y)$
(b) $f(x, y)=y^{x}$
(c) $f(s, t)=\arctan \left(\frac{s^{2}}{t^{2}}\right)$
(d) $z=\cos (3 x-5 y)$ at the point $\left(\frac{\pi}{6}, \frac{\pi}{15}, \frac{\sqrt{2}}{2}\right)$
(e) $w=x y^{2} z^{3}$
(f) $f(x, y, z)=\frac{6 x y}{\sqrt{25-z^{2}}}$ at the point $(1,2,4,4)$.
2. Find all the second-order partial derivatives of $f(x, y)=x y e^{y}$. Does Clairault's Theorem hold for this function?
3. Determine which of the following functions are solutions of Laplace's equation.
(a) $f(x, y)=x^{2}-y^{2}$
(b) $f(x, y)=x^{2}+y^{2}$
(c) $f(x, y)=\ln \left[\left(x^{2}+y^{2}\right)^{2}\right]$
(d) $f(x, y)=e^{-x} \cos (y)-e^{-y} \cos (x)$
4. Show that $u=\sin (k x) \sin (\alpha k t)$ is a solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

where α and k are constants.
5. Show that $f(x, y)=x e^{y}+y e^{x}$ is a solution of the partial differential equation

$$
f_{x x x}(x, y)+f_{y y y}(x, y)=x f_{x y y}(x, y)+y f_{x x y}(x, y)
$$

