MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 1.3	Math 2000 Worksheet	Fall 2018

For practice only. Not to be submitted.

1. Compute (without approximating) the first five terms in the sequence of partial sums for each of the following series.

(a)
$$\sum_{i=1}^{\infty} \frac{1-2i}{2-i^2}$$

(b) $\sum_{i=3}^{\infty} \frac{(-1)^i}{i!}$

2. Determine which of the following series must diverge, using the Divergence Test.

(a)
$$\sum_{i=1}^{\infty} \left(-\frac{3}{7}\right)^{i+1}$$

(b)
$$\sum_{i=50}^{\infty} \frac{i^3}{i(4i^2-5)}$$

(c)
$$\sum_{k=1}^{\infty} \frac{2^k}{5^{k-1}}$$

(d)
$$\sum_{i=1}^{\infty} i \sin\left(\frac{1}{i}\right)$$

- 3. The *n*th partial sum of a certain series $\sum_{i=1}^{\infty} a_i$ is $s_n = 5 \frac{2}{n^2}$. What is a_n ? Find the sum of the series.
- 4. For each of the following series, find a formula for the nth partial sum and determine whether the sequence of partial sums has a limit. If so, find the sum of the series.

(a)
$$\sum_{i=0}^{\infty} \frac{1}{(i+4)(i+5)}$$

(b) $\sum_{i=1}^{\infty} [i^2 - (i+1)^2]$
(c) $\sum_{i=2}^{\infty} \frac{2}{i(i-1)(i+1)}$

PLEASE TURN OVER

5. Find the sum of each of the following convergent series.

(a)
$$\sum_{i=1}^{\infty} 4\left(\frac{2}{3}\right)^{i}$$

(b) $\sum_{i=0}^{\infty} \frac{3^{i}-4^{i}}{3^{i}4^{i}}$
(c) $\sum_{i=1}^{\infty} \left(\frac{2}{5}\right)^{3i}$
(d) $\sum_{i=1}^{\infty} (-1)^{i-1} (0.2)^{i-1}$

6. Find all values of x for which each of the following series converge. What is the sum of the series (in terms of x) for these values?

(a)
$$\sum_{i=0}^{\infty} \frac{(x-6)^i}{4^i}$$

(b)
$$\sum_{i=1}^{\infty} [\sin(x)]^{i-1}$$

- 7. Express the repeating decimal as a geometric series and write its sum as the ratio of two integers.
 - (a) 0.042424242...
 - (b) 19.920920920...
- 8. A ball is dropped from a height of 1 metre onto a smooth surface. On each bounce, the ball rises to 60% of the height it reached on the previous bounce. Find the total distance that the ball travels.