For practice only. Not to be submitted.

1. Use the tabular method to determine the Taylor series (centered at $x=p$) for each of the given functions.
(a) $f(x)=x e^{x}, p=0$
(b) $f(x)=\sqrt{x}, p=1$
(c) $f(x)=\sin (2 x), p=\frac{\pi}{4}$
(d) $f(x)=x^{-4}, p=-2$
2. Suppose $f(x)=x e^{x}$ is approximated by the second Taylor polynomial centred at $x=0$. Use your results from Question 1 (a) to determine the accuracy of this approximation on the interval $-1 \leq x \leq 1$. What would the accuracy be if we used the tenth Taylor polynomial instead?
3. Use a known Maclaurin series to derive a Maclaurin series for the indicated function.
(a) $f(x)=e^{-\frac{x}{4}}$
(b) $f(x)=\sin \left(x^{6}\right)$
(c) $f(x)=x \cos (x)$
(d) $f(x)=\ln \left(\frac{1-2 x}{1+2 x}\right)$
