Name
 MUN Number

[14] 1. Determine whether each of the following series converges or diverges. Clearly indicate each test used, and show that the series meets any requirements of the test.
(a) $\sum_{i=1}^{\infty} \frac{4^{i}}{\sqrt{i}+5^{i}}$
(b) $\sum_{i=1}^{\infty} \frac{2 i+7}{4 i^{2}+3 i}$
(c) $\sum_{i=1}^{\infty} \frac{\ln (i)+1}{i^{4}}$
[10] 2. Find the sum of each series, or explain why the series is divergent.
(a) $\sum_{i=0}^{\infty} \frac{(-1)^{i+1} 6^{i}}{9^{i-1}}$
(b) $\sum_{i=1}^{\infty} \frac{2}{4 i^{2}+8 i+3}$
[4] 3. Suppose $\sum a_{i}$ is a positive, convergent series.
(a) Can this information be used to determine $\lim _{i \rightarrow \infty} a_{i}$? Briefly explain your answer.
(b) Can this information be used to determine whether $\sum\left(a_{i}\right)^{2}$ converges or diverges? Briefly explain your answer.
[4] 4. Suppose $w=x \ln (y)+z^{3}$ where $x=p \sin (q), y=\sqrt{p}$ and $z=4 p-7 q$. Use the Chain Rule to find $\frac{\partial w}{\partial q}$.
[8] 5. Consider the function

$$
f(x, y)=\frac{1}{27} x^{3}+\frac{1}{9} x y-\frac{1}{18} y^{2}-\frac{10}{3} x
$$

Find the (x, y) values of any critical points of $f(x, y)$ and use the Second Derivatives Test to classify the critical points as local minima, local maxima or saddle points.

