MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[4] 1. (a) We use the Ratio Test applied to the coefficients, with

$$
k_{i}=\frac{1 \cdot 3 \cdot 5 \cdots(2 i+1)}{(2 i)!} \quad \text { and } \quad k_{i+1}=\frac{1 \cdot 3 \cdot 5 \cdots(2 i+3)}{(2 i+2)!} .
$$

Then

$$
\begin{aligned}
\rho & =\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right| \\
& =\lim _{i \rightarrow \infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 i+3)}{(2 i+2)!} \cdot \frac{(2 i)!}{1 \cdot 3 \cdot 5 \cdots(2 i+1)} \\
& =\lim _{i \rightarrow \infty} \frac{2 i+3}{(2 i+1)(2 i+2)} \\
& =\lim _{i \rightarrow \infty} \frac{2 i+3}{4 i^{2}+6 i+2} \\
& =0
\end{aligned}
$$

so the radius of convergence is $R=\infty$. Hence the power series converges for all real numbers \mathbb{R}.
[6]
(b) First we have to rewrite the power series as

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i+1}}{6^{i} \ln (i)}(3-2 x)^{i}=\sum_{i=0}^{\infty} \frac{(-1)^{i+1}}{6^{i} \ln (i)} \cdot(-2)^{i}\left(x-\frac{3}{2}\right)^{i}=\sum_{i=0}^{\infty} \frac{-1}{3^{i} \ln (i)}\left(x-\frac{3}{2}\right)^{i}
$$

Now we can apply the Ratio Test with

$$
k_{i}=\frac{-1}{3^{i} \ln (i)} \quad \text { and } \quad k_{i+1}=\frac{-1}{3^{i+1} \ln (i+1)} .
$$

Then

$$
\begin{aligned}
\rho & =\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right| \\
& =\lim _{i \rightarrow \infty} \frac{1}{3^{i+1} \ln (i+1)} \cdot 3^{i} \ln (i) \\
& =\lim _{i \rightarrow \infty} \frac{\ln (i)}{3 \ln (i+1)} \\
& =\frac{1}{3}
\end{aligned}
$$

by the Evaluation Theorem and l'Hôpital's Rule. Hence the radius of convergence is $R=\frac{1}{\rho}=3$ and so the power series certainly converges for $\left|x-\frac{3}{2}\right|<3$, that is, for $-3<x-\frac{3}{2}<3$ or $-\frac{3}{2}<x<\frac{9}{2}$.
At $x=\frac{9}{2}$, the series becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i+1}}{6^{i} \ln (i)}(-6)^{i}=\sum_{i=0}^{\infty} \frac{-1}{\ln (i)},
$$

which diverges by the Limit Comparison Test with test series $\sum \frac{1}{i}$.
At $x=-\frac{3}{2}$, the series becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i+1}}{6^{i} \ln (i)} 6^{i}=\sum_{i=0}^{\infty} \frac{(-1)^{i+1}}{\ln (i)}
$$

which converges by the Alternating Series Test.
Thus the interval of convergence is $-\frac{3}{2} \leq x<\frac{9}{2}$.
[6] (c) Because of the power of $3 i$, we need to apply the Root Test to the entire expression of the terms of the series, and not just the coefficients. We have

$$
\begin{aligned}
L & =\lim _{i \rightarrow \infty}\left|a_{i}\right|^{\frac{1}{i}} \\
& =\lim _{i \rightarrow \infty} \frac{\left(i^{\frac{1}{i}}\right)^{4}}{8^{2-\frac{1}{i}}}|x|^{3} \\
& =\frac{|x|^{3}}{64} .
\end{aligned}
$$

Thus the series will certainly converge when

$$
\frac{|x|^{3}}{64}<1 \quad \Longrightarrow \quad-64<x^{3}<64 \quad \Longrightarrow \quad-4<x<4
$$

Hence the radius of convergence is $R=4$.
At $x=4$, the series becomes

$$
\sum_{i=0}^{\infty}(-1)^{i} \frac{i^{4}}{8^{2 i-1}} 4^{3 i}=\sum_{i=0}^{\infty}(-1)^{i} \frac{8 i^{4}}{64^{i}} 64^{i}=8 \sum_{i=0}^{\infty}(-1)^{i} i^{4}
$$

which diverges by the Divergence Test.
Similarly, at $x=-4$, the series becomes

$$
\sum_{i=0}^{\infty}(-1)^{i} \frac{i^{4}}{8^{2 i-1}}(-4)^{3 i}=\sum_{i=0}^{\infty} \frac{8 i^{4}}{64^{i}} 64^{i}=8 \sum_{i=0}^{\infty} i^{4}
$$

which also diverges by the Divergence Test.
Thus the interval of convergence is $-4<x<4$.
2. (a) First we set

$$
\frac{1}{16} x^{2}=\frac{1}{2} \sqrt{x} \quad \Longrightarrow \quad x^{2}=8 \sqrt{x} \quad \Longrightarrow \quad x^{4}=64 x \quad \Longrightarrow \quad x\left(x^{3}-64\right)=0
$$

so the intersection points of the two curves are $x=0$ and $x=4$. On this region, $y=\frac{1}{2} \sqrt{x}$ is the upper boundary curve and $y=\frac{1}{16} x^{2}$ is the lower boundary curve, so

$$
\begin{aligned}
V & =\int_{0}^{4} \int_{\frac{1}{16} x^{2}}^{\frac{1}{2} \sqrt{x}} x y^{2} d y d x \\
& =\int_{0}^{4}\left[\frac{1}{3} x y^{3}\right]_{y=\frac{1}{16} x^{2}}^{\frac{1}{2} \sqrt{x}} d x \\
& =\int_{0}^{4}\left[\frac{1}{24} x^{\frac{5}{2}}-\frac{1}{12288} x^{7}\right] d x \\
& =\left[\frac{1}{84} x^{\frac{7}{2}}-\frac{1}{98304} x^{8}\right]_{0}^{4} \\
& =\frac{32}{21}-\frac{2}{3} \\
& =\frac{6}{7}
\end{aligned}
$$

[4] (b) As functions of y, the two boundary curves become $x=4 \sqrt{y}$ and $x=4 y^{2}$. Using the information we found in part (a), when $x=0$ then $y=0$, and when $x=4$ then $y=1$. Since $x=4 \sqrt{y}$ is the right boundary curve and $x=4 y^{2}$ is the left boundary curve, we have

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{4 y^{2}}^{4 \sqrt{y}} x y^{2} d x d y \\
& =\int_{0}^{1}\left[\frac{1}{2} x^{2} y^{2}\right]_{x=4 y^{2}}^{x=4 \sqrt{y}} d y \\
& =\int_{0}^{1}\left[8 y^{3}-8 y^{6}\right] d y \\
& =\left[2 y^{4}-\frac{8}{7} y^{7}\right]_{0}^{1} \\
& =2-\frac{8}{7} \\
& =\frac{6}{7}
\end{aligned}
$$

[5] 3. The points $(-1,4)$ and $(1,2)$ are joined by the line $y=3-x$. The points $(1,2)$ and $(2,4)$ are joined by the line $y=2 x$. The points $(-1,4)$ and $(2,4)$ are joined by the line $y=4$.

This is a Type II region, so we can rewrite the left boundary curve $y=3-x$ as $x=3-y$, and we can rewrite the right boundary curve $y=2 x$ as $x=\frac{1}{2} y$. Then

$$
\begin{aligned}
A & =\int_{2}^{4} \int_{3-y}^{\frac{1}{2} y} d x d y \\
& =\int_{2}^{4}[y]_{x=3-y}^{x=\frac{1}{2} y} d y \\
& =\int_{2}^{4}\left[\frac{1}{2} y-(3-y)\right] d y \\
& =\int_{2}^{4}\left(\frac{3}{2} y-3\right) d y \\
& =\left[\frac{3}{4} y^{2}-3 y\right]_{2}^{4} \\
& =12-12-3+6 \\
& =3
\end{aligned}
$$

[5] 4. This is both a Type I and Type II region, but we cannot integrate $e^{2 x^{3}}$ with respect to x. Thus we must start with an integral with respect to y, which means that we will treat this as a Type I region, bounded above by $y=x^{2}$ and below by $y=0$ (which intersect at $x=0$). Hence

$$
\begin{aligned}
\iint_{D} e^{2 x^{3}} d A & =\int_{0}^{1} \int_{0}^{x^{2}} e^{2 x^{3}} d y d x \\
& =\int_{0}^{1}\left[y e^{2 x^{3}}\right]_{y=0}^{y=x^{2}} d x \\
& =\int_{0}^{1} x^{2} e^{2 x^{3}} d x
\end{aligned}
$$

Now we let $u=2 x^{3}$ so $\frac{1}{6} d u=x^{2} d x$. When $x=0, u=0$. When $x=1, u=2$. The integral becomes

$$
\begin{aligned}
\iint_{D} e^{2 x^{3}} d A & =\frac{1}{6} \int_{0}^{2} e^{u} d u \\
& =\frac{1}{6}\left[e^{u}\right]_{0}^{2} \\
& =\frac{1}{6}\left(e^{2}-1\right) .
\end{aligned}
$$

[6] 5. As given, this is a Type I region bounded above by $y=\sqrt{\pi}$ and below by $y=x^{3}$ on the interval from $x=0$ to $x=\sqrt[6]{\pi}$. However, we cannot find an antiderivative of $\sin \left(y^{2}\right)$. So instead we will interpret this as a Type II region bounded to the right by $x=y^{\frac{1}{3}}$ and to the left by $x=0$ on the interval from $y=0$ to $y=\sqrt{\pi}$. Then

$$
\begin{aligned}
\int_{0}^{\sqrt[6]{\pi}} \int_{x^{3}}^{\sqrt{\pi}} x^{2} \sin \left(y^{2}\right) d y d x & =\int_{0}^{\sqrt{\pi}} \int_{0}^{y^{\frac{1}{3}}} x^{2} \sin \left(y^{2}\right) d x d y \\
& =\int_{0}^{\sqrt{\pi}}\left[\frac{1}{3} x^{3} \sin \left(y^{2}\right)\right]_{x=0}^{x=y^{\frac{1}{3}}} d y \\
& =\frac{1}{3} \int_{0}^{\sqrt{\pi}} y \sin \left(y^{2}\right) d y
\end{aligned}
$$

Let $u=y^{2}$ so $\frac{1}{2} d u=y d y$. When $y=0, u=0$. When $y=\sqrt{\pi}, u=\pi$. The integral becomes

$$
\begin{aligned}
\int_{0}^{\sqrt[6]{\pi}} \int_{x^{3}}^{\sqrt{\pi}} x^{2} \sin \left(y^{2}\right) d y d x & =\frac{1}{6} \int_{0}^{\pi} \sin (u) d u \\
& =\frac{1}{6}[-\cos (u)]_{0}^{\pi} \\
& =\frac{1}{6}(1+1) \\
& =\frac{1}{3}
\end{aligned}
$$

