MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) First consider the absolute series $\sum_{i=1}^{\infty} \frac{2 i+1}{3 i^{3}-2}$. Note that, for large i, this resembles the series $\sum_{i=1}^{\infty} \frac{i}{i^{3}}=\sum_{i=1}^{\infty} \frac{1}{i^{2}}$, which is a convergent p-series. Then

$$
\lim _{i \rightarrow \infty} \frac{\frac{2 i+1}{3 i^{3}-2}}{\frac{1}{i^{2}}}=\lim _{i \rightarrow \infty} \frac{2 i^{3}+i}{3 i^{3}-2}=\frac{2}{3}
$$

and so, by the Limit Comparison Test, $\sum_{i=1}^{\infty} \frac{2 i+1}{3 i^{3}-2}$ also converges. We conclude that the given series is absolutely convergent.
[5]
(b) First consider the absolute series $\sum_{i=1}^{\infty} \frac{2 i^{2}+i}{3 i^{3}-2}$. Note that, for large i, this resembles $\sum_{i=1}^{\infty} \frac{i^{2}}{i^{3}}=\sum_{i=1}^{\infty} \frac{1}{i}$, which is the (divergent) harmonic series. Then

$$
\lim _{i \rightarrow \infty} \frac{\frac{2 i^{2}+i}{3 i^{3}-2}}{\frac{1}{i}}=\lim _{i \rightarrow \infty} \frac{2 i^{3}+i^{2}}{3 i^{3}-2}=\frac{2}{3}
$$

and so, by the Limit Comparison Test, $\sum_{i=1}^{\infty} \frac{2 i^{2}+i}{3 i^{3}-2}$ also diverges. We conclude that the given series is not absolutely convergent.
So now we return to the original series $\sum_{i=1}^{\infty}(-1)^{i} \frac{2 i^{2}+i}{3 i^{3}-2}$. Let $p_{i}=\frac{2 i^{2}+i}{3 i^{3}-2}$. Immediately we can see that $\lim _{i \rightarrow \infty} p_{i}=0$. From $f(x)=\frac{2 x^{2}+x}{3 x^{3}-2}$, we have

$$
f^{\prime}(x)=-\frac{2\left(3 x^{4}+3 x^{3}+4 x+1\right)}{\left(3 x^{3}-2\right)^{2}} .
$$

Since $f^{\prime}(x)<0$ for $x \geq 1,\left\{p_{i}\right\}$ is decreasing for $i \geq 1$, and therefore fulfills the requirements of the Alternating Series Test. Thus $\sum_{i=1}^{\infty}(-1)^{i} \frac{2 i^{2}+i}{3 i^{3}-2}$ is convergent, and consequently it is conditionally convergent.
[2] (c) Observe that

$$
\lim _{i \rightarrow \infty} \frac{2 i^{3}+i}{3 i^{3}-2}=\frac{2}{3}
$$

so the terms of the series alternately approach $\pm \frac{2}{3}$. Hence, by the Divergence Test, this series is divergent.
[4]
(d) We use the Ratio Test, with

$$
\left|a_{i}\right|=\frac{7^{i}}{1 \cdot 3 \cdot 5 \cdots(2 i+1)} \quad \text { so } \quad\left|a_{i+1}\right|=\frac{7^{i+1}}{1 \cdot 3 \cdot 5 \cdots(2 i+3)} .
$$

Thus

$$
L=\lim _{i \rightarrow \infty}\left|\frac{a_{i+1}}{a_{i}}\right|=\lim _{i \rightarrow \infty} \frac{7^{i+1}}{1 \cdot 3 \cdot 5 \cdots(2 i+3)} \cdot \frac{1 \cdot 3 \cdot 5 \cdots(2 i+1)}{7^{i}}=\lim _{i \rightarrow \infty} \frac{7}{2 i+3}=0 .
$$

Since $L<1$, we conclude that the given series is absolutely convergent.
[4]
(e) We use the Ratio Test, with

$$
\left|a_{i}\right|=\frac{(3 i)!}{(i!)^{3}} \quad \text { so } \quad\left|a_{i+1}\right|=\frac{(3 i+3)!}{[(i+1)!]^{3}} .
$$

Thus

$$
L=\lim _{i \rightarrow \infty}\left|\frac{a_{i+1}}{a_{i}}\right|=\lim _{i \rightarrow \infty} \frac{(3 i+3)!}{[(i+1)!]^{3}} \cdot \frac{(i!)^{3}}{(3 i)!}=\lim _{i \rightarrow \infty} \frac{(3 i+1)(3 i+2)(3 i+3)}{(i+1)^{3}}=27 .
$$

Since $L>1$, the given series must be divergent.
[4]
(f) We use the Root Test, with

$$
\left|a_{i}\right|=\frac{i}{[\arctan (i)]^{i}} \quad \text { so } \quad\left|a_{i}\right|^{\frac{1}{i}}=\frac{i^{\frac{1}{i}}}{\arctan (i)} .
$$

Then

$$
L=\lim _{i \rightarrow \infty}\left|a_{i}\right|^{\frac{1}{i}}=\lim _{i \rightarrow \infty} \frac{i^{\frac{1}{i}}}{\arctan (i)}=\frac{1}{\frac{\pi}{2}}=\frac{2}{\pi} .
$$

Since $L<1$, we conclude that the given series is absolutely convergent.
[4] 2. Let $p_{i}=\frac{1}{4 i^{3}}$. It's clear that $\lim _{i \rightarrow \infty} p_{i}=0$ and since $4 i^{3}<4(i+1)^{3}$, it must be that $p_{i}<p_{i+1}$ so $\left\{p_{i}\right\}$ is decreasing. Hence this series meets the requirements of the Alternating Series Test. Then

$$
\left|R_{n}\right|=\left|a_{n+1}\right|=\frac{1}{4(n+1)^{3}} .
$$

To achieve the desired accuracy, we set

$$
\begin{aligned}
\frac{1}{4(n+1)^{3}} & =0.001=\frac{1}{1000} \\
4(n+1)^{3} & =1000 \\
n+1 & =\sqrt[3]{250} \approx 6.3 \\
n & \approx 5.3 .
\end{aligned}
$$

Hence the partial sum s_{6} will guarantee accuracy to within 0.0001 , and

$$
s_{6}=\frac{1}{4}-\frac{1}{32}+\frac{1}{108}-\frac{1}{256}+\frac{1}{500}-\frac{1}{864}=\frac{194353}{864000} \approx 0.2249 .
$$

(In fact, the true sum of the series is about 0.225386.)
[3] 3. (a) Let $u=x^{2} y$ so $\frac{1}{2} d u=x y d x$. The integral becomes

$$
\begin{aligned}
\int x y \cos \left(x^{2} y\right) d x & =\frac{1}{2} \int \cos (u) d u \\
& =\frac{1}{2} \sin (u)+C(y) \\
& =\frac{1}{2} \sin \left(x^{2} y\right)+C(y) .
\end{aligned}
$$

[3] (b) We use integration by parts with $w=x y$ so $d w=x d y$, and $d v=\cos \left(x^{2} y\right) d y$ so $v=\frac{1}{x^{2}} \sin \left(x^{2} y\right)$. Thus

$$
\begin{aligned}
\int x y \cos \left(x^{2} y\right) d y & =x y \cdot \frac{1}{x^{2}} \sin \left(x^{2} y\right)-\int \frac{1}{x^{2}} \sin \left(x^{2} y\right) \cdot x d y \\
& =\frac{y}{x} \sin \left(x^{2} y\right)-\int \frac{1}{x} \sin \left(x^{2} y\right) d y \\
& =\frac{y}{x} \sin \left(x^{2} y\right)-\frac{1}{x} \cdot\left[-\frac{1}{x^{2}} \cos \left(x^{2} y\right)\right]+C(x) \\
& =\frac{y}{x} \sin \left(x^{2} y\right)+\frac{1}{x^{3}} \cos \left(x^{2} y\right)+C(x) .
\end{aligned}
$$

[4] 4. First observe that the function which describes the plane is

$$
z=4-2 x+\frac{1}{2} y
$$

Thus we must compute

$$
\iint_{R}\left(4-2 x+\frac{1}{2} y\right) d A
$$

It might be slightly easier to begin by integrating with respect to y (since $y=0$ is one of
the bounds), although it won't matter much either way:

$$
\begin{aligned}
\iint_{R}\left(4-2 x+\frac{1}{2} y\right) d A & =\int_{-2}^{2} \int_{0}^{5}\left(4-2 x+\frac{1}{2} y\right) d y d x \\
& =\int_{-2}^{2}\left[4 y-2 x y+\frac{1}{4} y^{2}\right]_{y=0}^{y=5} d x \\
& =\int_{-2}^{2}\left[\left(20-10 x+\frac{25}{4}\right)-0\right] d x \\
& =\int_{-2}^{2}\left(\frac{105}{4}-10 x\right) d x \\
& =\left[\frac{105}{4} x-5 x^{2}\right]_{-2}^{2} \\
& =\left(\frac{105}{2}-50\right)-\left(-\frac{105}{2}-50\right) \\
& =105
\end{aligned}
$$

[4] 5. This time, in the absence of any other considerations, the $x=0$ bound suggests that we begin by integrating with respect to x :

$$
\begin{aligned}
\iint_{R}\left(9-x^{2}+y^{2}\right) d A & =\int_{-1}^{2} \int_{0}^{3}\left(9-x^{2}+y^{2}\right) d x d y \\
& =\int_{-1}^{2}\left[9 x-\frac{1}{3} x^{3}+x y^{2}\right]_{x=0}^{x=3} d y \\
& =\int_{-1}^{2}\left[\left(27-9+3 y^{2}\right)-0\right] d y \\
& =\int_{-1}^{2}\left(18+3 y^{2}\right) d y \\
& =\left[18 y+y^{3}\right]_{-1}^{2} \\
& =(36+8)-(-18-1) \\
& =63
\end{aligned}
$$

