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[B] 1. (a) Let f(z) = @10 This is certainly positive and continuous for > 1. Furthermore,
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so f(x) is decreasing because f'(z) < 0 for all z > 1. Hence the requirements of the
Integral Test are met.

Now, using a partial fraction decomposition,
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Since the integral is convergent, the given series is convergent as well.
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5] (b) Let f(z) = 1) This is certainly positive and continuous for > 1. Furthermore,
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so f(x) is decreasing because f’(z) < 0 for all z > 1. Hence the requirements of the
Integral Test are met.
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Now, using a partial fraction decomposition,
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Because the integral is divergent, we conclude that the given series is also divergent.

1
(c) Let f(z) = n(;E ) . Observe that f(z) is positive and continuous for z > 2. Additionally,
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Note that In(z) > 1 for x > 2, so f(x) is decreasing because f'(x) < 0 for all z > 2.
Using integration by parts,
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Because the integral is convergent, we know that the given series is convergent as well.



[5] 2. Let f(x) which is positive and continuous for z > 1. Observe that
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so f(z) is decreasing since f'(x) < 0 for all z > 1. Hence the remainder estimate for the
Integral Test applies. Thus we know that the nth remainder R,, is such that
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When n = 100, then, we know that
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Hence the partial sum s is accurate to the true sum of the series with an error of no more
than approximately 0.00009.

(In fact, the true sum of the series is about 0.94853967, while s199 & 0.94845112, so the true
error is approximately 0.0000886, only slightly less than our “worst case scenario”.)

[5] 3. (a) Observe that
1 1 1

~

i(i2+1) B+i B
so we use the Direct Comparison Test with the test series Z }3 (a convergent p-series).
Since i < i® + 1, we immediately have
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and thus we can conclude that the given series is convergent. (We could also use the
Limit Comparison Test here.)
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Observe that
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so we use the Limit Comparison Test with the test series Z —, the (divergent) harmonic
1
series. Since
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we can conclude that the given series is also divergent.

Observe that '
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Thus we employ the Direct Comparison Test with the test series Z (5) (a conver-
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gent geometric series) to conclude that the given series is also convergent.

First we note that this series consists only of negative terms, so we write
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and we will instead apply a Comparison Test to the resulting positive series. For large 7,
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Since the geometric terms dominate, we will use the Limit Comparison Test and choose
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as our test series Z <§> (a convergent geometric series). Thus

Z- 2i-1(42 _ 5) 9-1.9i.3i 42-5 1 1
T N e G Al ) P (R Y B s R S B
i—oo t;  i—oo 6IFL(72 — 249) iwoo 6067 i—o0 12 — 21 12 3

Now we can conclude that the given series is also convergent.



