SOLUTIONS

[5] 1. (a) Let $f(x)=\frac{1}{x\left(x^{2}+1\right)}$. This is certainly positive and continuous for $x \geq 1$. Furthermore,

$$
f^{\prime}(x)=-\frac{3 x^{2}+1}{x^{2}\left(x^{2}+1\right)^{2}}
$$

so $f(x)$ is decreasing because $f^{\prime}(x)<0$ for all $x \geq 1$. Hence the requirements of the Integral Test are met.
Now, using a partial fraction decomposition,

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & =\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{1}{x\left(x^{2}+1\right)} d x \\
& =\lim _{T \rightarrow \infty} \int_{1}^{T}\left(\frac{1}{x}-\frac{x}{x^{2}+1}\right) d x \\
& =\lim _{T \rightarrow \infty}\left[\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|\right]_{1}^{T} \\
& =\lim _{T \rightarrow \infty}\left[\ln (T)-\frac{1}{2} \ln \left(T^{2}+1\right)-\ln (1)+\frac{1}{2} \ln (2)\right] \\
& =\lim _{T \rightarrow \infty} \ln \left(\frac{T}{\sqrt{T^{2}+1}}\right)+\frac{1}{2} \ln (2) \\
& =\ln (1)+\frac{1}{2} \ln (2) \\
& =\frac{1}{2} \ln (2)
\end{aligned}
$$

Since the integral is convergent, the given series is convergent as well.
(b) Let $f(x)=\frac{2 x^{2}+1}{x\left(x^{2}+1\right)}$. This is certainly positive and continuous for $x \geq 1$. Furthermore,

$$
f^{\prime}(x)=-\frac{2 x^{4}+x^{2}+1}{x^{2}\left(x^{2}+1\right)^{2}}
$$

so $f(x)$ is decreasing because $f^{\prime}(x)<0$ for all $x \geq 1$. Hence the requirements of the Integral Test are met.

Now, using a partial fraction decomposition,

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & =\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{2 x^{2}+1}{x\left(x^{2}+1\right)} d x \\
& =\lim _{T \rightarrow \infty} \int_{1}^{T}\left(\frac{1}{x}+\frac{x}{x^{2}+1}\right) d x \\
& =\lim _{T \rightarrow \infty}\left[\ln |x|+\frac{1}{2} \ln \left|x^{2}+1\right|\right]_{1}^{T} \\
& =\lim _{T \rightarrow \infty}\left[\ln (T)+\frac{1}{2} \ln \left(T^{2}+1\right)-\ln (1)-\frac{1}{2} \ln (2)\right] \\
& =\lim _{T \rightarrow \infty} \ln \left(T \sqrt{T^{2}+1}\right)-\frac{1}{2} \ln (2) \\
& =\infty
\end{aligned}
$$

Because the integral is divergent, we conclude that the given series is also divergent.
[5] (c) Let $f(x)=\frac{\ln (x)}{x^{2}}$. Observe that $f(x)$ is positive and continuous for $x \geq 2$. Additionally,

$$
f^{\prime}(x)=\frac{1-2 \ln (x)}{x^{3}} .
$$

Note that $\ln (x)>1$ for $x \geq 2$, so $f(x)$ is decreasing because $f^{\prime}(x)<0$ for all $x \geq 2$. Using integration by parts,

$$
\begin{aligned}
\int_{2}^{\infty} f(x) d x & =\lim _{T \rightarrow \infty} \int_{2}^{T} \frac{\ln (x)}{x^{2}} d x \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (x)}{x}-\frac{1}{x}\right]_{2}^{T} \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (T)}{T}-\frac{1}{T}+\frac{\ln (2)}{2}+\frac{1}{2}\right] \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (T)}{T}-0+\frac{\ln (2)}{2}+\frac{1}{2}\right] \\
& \stackrel{H}{=} \frac{\ln (2)}{2}+\frac{1}{2}-\lim _{T \rightarrow \infty} \frac{\frac{1}{T}}{1} \\
& =\frac{\ln (2)+1}{2}-0 \\
& =\frac{\ln (2)+1}{2} .
\end{aligned}
$$

Because the integral is convergent, we know that the given series is convergent as well.
[5] 2. Let $f(x)=\frac{1}{\sqrt{x} e^{\sqrt{x}}}$, which is positive and continuous for $x \geq 1$. Observe that

$$
f^{\prime}(x)=-\frac{1+\sqrt{x}}{2 x^{\frac{3}{2}} e^{\sqrt{x}}}
$$

so $f(x)$ is decreasing since $f^{\prime}(x)<0$ for all $x \geq 1$. Hence the remainder estimate for the Integral Test applies. Thus we know that the nth remainder R_{n} is such that

$$
R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

where (by u-substitution with $u=-\sqrt{x}$)

$$
\begin{aligned}
\int_{n}^{\infty} f(x) d x & =\lim _{T \rightarrow \infty} \int_{n}^{T} \frac{1}{\sqrt{x} e^{\sqrt{x}}} d x \\
& =\lim _{T \rightarrow \infty}-2 \int_{-\sqrt{n}}^{-\sqrt{T}} e^{u} d u \\
& =\lim _{T \rightarrow \infty}-2\left[e^{u}\right]_{-\sqrt{n}}^{-\sqrt{T}} \\
& =\lim _{T \rightarrow \infty}-2\left[e^{-\sqrt{T}}-e^{-\sqrt{n}}\right] \\
& =-2\left[0-e^{-\sqrt{n}}\right] \\
& =\frac{2}{e^{\sqrt{n}}}
\end{aligned}
$$

When $n=100$, then, we know that

$$
R_{100} \leq \frac{2}{e^{\sqrt{100}}}=\frac{2}{e^{10}} \approx 0.0000908
$$

Hence the partial sum s_{100} is accurate to the true sum of the series with an error of no more than approximately 0.00009 .
(In fact, the true sum of the series is about 0.94853967 , while $s_{100} \approx 0.94845112$, so the true error is approximately 0.0000886 , only slightly less than our "worst case scenario".)
[5] 3. (a) Observe that

$$
\frac{1}{i\left(i^{2}+1\right)}=\frac{1}{i^{3}+i} \approx \frac{1}{i^{3}}
$$

so we use the Direct Comparison Test with the test series $\sum \frac{1}{i^{3}}$ (a convergent p-series). Since $i^{3}<i^{3}+1$, we immediately have

$$
\frac{1}{i^{3}}>\frac{1}{i^{3}+1}
$$

and thus we can conclude that the given series is convergent. (We could also use the Limit Comparison Test here.)
[5] (b) Observe that

$$
\frac{2 i^{2}+1}{i\left(i^{2}+1\right)}=\frac{2 i^{2}+1}{i^{3}+i} \approx \frac{2 i^{2}}{i^{3}}=\frac{2}{i}
$$

so we use the Limit Comparison Test with the test series $\sum \frac{1}{i}$, the (divergent) harmonic series. Since

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{t_{i}}=\lim _{i \rightarrow \infty} \frac{2 i^{2}+1}{i\left(i^{2}+1\right)} \cdot i=\lim _{i \rightarrow \infty} \frac{2 i^{2}+1}{i^{2}+1}=2
$$

we can conclude that the given series is also divergent.
(c) Observe that

$$
\begin{equation*}
i!=1 \cdot 2 \cdot 3 \cdots i>1 \cdot \underbrace{2 \cdot 2 \cdots 2}_{(i-1) \text { times }}=2^{i-1} \tag{5}
\end{equation*}
$$

so

$$
\frac{1}{i!}<\frac{1}{2^{i-1}}=\left(\frac{1}{2}\right)^{i-1}
$$

Thus we employ the Direct Comparison Test with the test series $\sum\left(\frac{1}{2}\right)^{i-1}$ (a convergent geometric series) to conclude that the given series is also convergent.
[5] (d) First we note that this series consists only of negative terms, so we write

$$
\sum_{i=3}^{\infty} \frac{2^{i-1}\left(4 i^{2}-5\right)}{6^{i+1}\left(2 i-i^{2}\right)}=-\sum_{i=3}^{\infty} \frac{2^{i-1}\left(4 i^{2}-5\right)}{6^{i+1}\left(i^{2}-2 i\right)}
$$

and we will instead apply a Comparison Test to the resulting positive series. For large i,

$$
\frac{4 i^{2}-5}{i^{2}-2 i} \approx 4
$$

while

$$
\frac{2^{i-1}}{6^{i+1}} \approx\left(\frac{2}{6}\right)^{i}=\left(\frac{1}{3}\right)^{i}
$$

Since the geometric terms dominate, we will use the Limit Comparison Test and choose as our test series $\sum\left(\frac{1}{3}\right)^{i}$ (a convergent geometric series). Thus

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{t_{i}}=\lim _{i \rightarrow \infty} \frac{2^{i-1}\left(4 i^{2}-5\right)}{6^{i+1}\left(i^{2}-2 i\right)} \cdot 3^{i}=\lim _{i \rightarrow \infty} \frac{2^{-1} \cdot 2^{i} \cdot 3^{i}}{6 \cdot 6^{i}} \cdot \lim _{i \rightarrow \infty} \frac{4 i^{2}-5}{i^{2}-2 i}=\frac{1}{12} \cdot 4=\frac{1}{3} .
$$

Now we can conclude that the given series is also convergent.

