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SOLUTIONS

1.[5] (a) Let f(x) =
1

x(x2 + 1)
. This is certainly positive and continuous for x ≥ 1. Furthermore,

f ′(x) = − 3x2 + 1

x2(x2 + 1)2
,

so f(x) is decreasing because f ′(x) < 0 for all x ≥ 1. Hence the requirements of the
Integral Test are met.

Now, using a partial fraction decomposition,∫ ∞
1

f(x) dx = lim
T→∞

∫ T

1

1

x(x2 + 1)
dx

= lim
T→∞

∫ T

1

(
1

x
− x

x2 + 1

)
dx

= lim
T→∞

[
ln|x| − 1

2
ln|x2 + 1|

]T
1

= lim
T→∞

[
ln(T )− 1

2
ln(T 2 + 1)− ln(1) +

1

2
ln(2)

]
= lim

T→∞
ln

(
T√

T 2 + 1

)
+

1

2
ln(2)

= ln(1) +
1

2
ln(2)

=
1

2
ln(2).

Since the integral is convergent, the given series is convergent as well.

[5] (b) Let f(x) =
2x2 + 1

x(x2 + 1)
. This is certainly positive and continuous for x ≥ 1. Furthermore,

f ′(x) = −2x4 + x2 + 1

x2(x2 + 1)2
,

so f(x) is decreasing because f ′(x) < 0 for all x ≥ 1. Hence the requirements of the
Integral Test are met.



Now, using a partial fraction decomposition,∫ ∞
1

f(x) dx = lim
T→∞

∫ T

1

2x2 + 1

x(x2 + 1)
dx

= lim
T→∞

∫ T

1

(
1

x
+

x

x2 + 1

)
dx

= lim
T→∞

[
ln|x|+ 1

2
ln|x2 + 1|

]T
1

= lim
T→∞

[
ln(T ) +

1

2
ln(T 2 + 1)− ln(1)− 1

2
ln(2)

]
= lim

T→∞
ln
(
T
√
T 2 + 1

)
− 1

2
ln(2)

=∞.

Because the integral is divergent, we conclude that the given series is also divergent.

[5] (c) Let f(x) =
ln(x)

x2
. Observe that f(x) is positive and continuous for x ≥ 2. Additionally,

f ′(x) =
1− 2 ln(x)

x3
.

Note that ln(x) > 1 for x ≥ 2, so f(x) is decreasing because f ′(x) < 0 for all x ≥ 2.
Using integration by parts,∫ ∞

2

f(x) dx = lim
T→∞

∫ T

2

ln(x)

x2
dx

= lim
T→∞

[
− ln(x)

x
− 1

x

]T
2

= lim
T→∞

[
− ln(T )

T
− 1

T
+

ln(2)

2
+

1

2

]
= lim

T→∞

[
− ln(T )

T
− 0 +

ln(2)

2
+

1

2

]
H
=

ln(2)

2
+

1

2
− lim

T→∞

1
T

1

=
ln(2) + 1

2
− 0

=
ln(2) + 1

2
.

Because the integral is convergent, we know that the given series is convergent as well.



[5] 2. Let f(x) =
1√
xe
√
x
, which is positive and continuous for x ≥ 1. Observe that

f ′(x) = −1 +
√
x

2x
3
2 e
√
x

so f(x) is decreasing since f ′(x) < 0 for all x ≥ 1. Hence the remainder estimate for the
Integral Test applies. Thus we know that the nth remainder Rn is such that

Rn ≤
∫ ∞
n

f(x) dx,

where (by u-substitution with u = −
√
x)∫ ∞

n

f(x) dx = lim
T→∞

∫ T

n

1√
xe
√
x
dx

= lim
T→∞

−2
∫ −√T
−
√
n

eu du

= lim
T→∞

−2
[
eu
]−√T
−
√
n

= lim
T→∞

−2
[
e−
√
T − e−

√
n
]

= −2
[
0− e−

√
n
]

=
2

e
√
n
.

When n = 100, then, we know that

R100 ≤
2

e
√
100

=
2

e10
≈ 0.0000908.

Hence the partial sum s100 is accurate to the true sum of the series with an error of no more
than approximately 0.00009.

(In fact, the true sum of the series is about 0.94853967, while s100 ≈ 0.94845112, so the true
error is approximately 0.0000886, only slightly less than our “worst case scenario”.)

3.[5] (a) Observe that
1

i(i2 + 1)
=

1

i3 + i
≈ 1

i3

so we use the Direct Comparison Test with the test series
∑ 1

i3
(a convergent p-series).

Since i3 < i3 + 1, we immediately have

1

i3
>

1

i3 + 1

and thus we can conclude that the given series is convergent. (We could also use the
Limit Comparison Test here.)



[5] (b) Observe that
2i2 + 1

i(i2 + 1)
=

2i2 + 1

i3 + i
≈ 2i2

i3
=

2

i

so we use the Limit Comparison Test with the test series
∑ 1

i
, the (divergent) harmonic

series. Since

lim
i→∞

ai
ti

= lim
i→∞

2i2 + 1

i(i2 + 1)
· i = lim

i→∞

2i2 + 1

i2 + 1
= 2,

we can conclude that the given series is also divergent.

[5] (c) Observe that
i! = 1 · 2 · 3 · · · i > 1 · 2 · 2 · · · 2︸ ︷︷ ︸

(i−1) times

= 2i−1

so
1

i!
<

1

2i−1
=

(
1

2

)i−1

.

Thus we employ the Direct Comparison Test with the test series
∑(

1

2

)i−1

(a conver-

gent geometric series) to conclude that the given series is also convergent.

[5] (d) First we note that this series consists only of negative terms, so we write

∞∑
i=3

2i−1(4i2 − 5)

6i+1(2i− i2)
= −

∞∑
i=3

2i−1(4i2 − 5)

6i+1(i2 − 2i)

and we will instead apply a Comparison Test to the resulting positive series. For large i,

4i2 − 5

i2 − 2i
≈ 4,

while
2i−1

6i+1
≈
(
2

6

)i

=

(
1

3

)i

.

Since the geometric terms dominate, we will use the Limit Comparison Test and choose

as our test series
∑(

1

3

)i

(a convergent geometric series). Thus

lim
i→∞

ai
ti

= lim
i→∞

2i−1(4i2 − 5)

6i+1(i2 − 2i)
· 3i = lim

i→∞

2−1 · 2i · 3i

6 · 6i
· lim
i→∞

4i2 − 5

i2 − 2i
=

1

12
· 4 =

1

3
.

Now we can conclude that the given series is also convergent.


