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SOLUTIONS

1. (a) We merely note that
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so by the Divergence Test, this is a divergent series.

We can perform a partial fraction decomposition and write
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Recalling that the first term corresponds to 7 = 2, this means that the first few terms of
the sequence of partial sums are
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Observe that the —% in the first term, the —I—% in the second term, and the —% in the
third term all cancel out. Similarly, the —%l in the second term, the —I—% in the third
term, and the —%1 in the fourth term all cancel out. Thus, for example, we can simplify

s4 above to become
1 3 1 2 3 2
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The telescoping cancels out everything except the first two numbers in the first term,
the first number in the second term, the last number in the second-last term, and the
last two numbers in the last term.

Following this pattern, then, we can see that
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Thus we conclude that this is a convergent series, and
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We will first attempt to use the Divergence Test. We consider the corresponding function
f(x) = Jx = zx. As z — oo this is an 0o” indeterminate form, so we use ’'Hopital’s

Rule, letting
y=In (xi> = ln(x)‘
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and so
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By the Evaluation Theorem, we can conclude that
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as well, and thus this series is divergent by the Divergence Test.

Observe that
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Hence the series is divergent by the Divergence Test.

We can write
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Thus the first few terms of the sequence of partial sums are

In general, we can see that
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Since the sequence of partial sums diverges, we can conclude that this series is also
divergent by the Divergent Test.



[4] 2. By the Chain Rule,
dz Oz d:t+6z dy
dt — Or dt Oy dt’
Here,
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Hence
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6] 3. By the Chain Rule,
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but
fz - fﬁﬁz
because o does not depend on z. We have
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[5] 4. We rewrite the equation as x?y + y32% — 223 — ze¥ cosh(z) = 0 and set

F(z,y,z) = 2%y + y°2" — 2*2° — e’ cosh(z).

Then
F, = 2zy — 32*2* — ¥ cosh(z)
F, = 2 + 3y*2* — zeY cosh(2)

F, = 2%z — 42°2% — ze¥sinh(2).
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Hence we have

and

82_ Fx
8:1:_ Fz
0z Fy

2xy — 32"2® — ¥ cosh(z)
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- _2y32 — 42323 — wevsinh(z)



