SOLUTIONS

[3] 1. (a) We merely note that

$$
\lim _{i \rightarrow \infty} \frac{i^{3}-3}{3 i^{3}-i}=\frac{1}{3} \neq 0
$$

so by the Divergence Test, this is a divergent series.
[8]
(b) We can perform a partial fraction decomposition and write

$$
\frac{i-3}{i^{3}-i}=\frac{i-3}{i(i-1)(i+1)}=-\frac{1}{i-1}+\frac{3}{i}-\frac{2}{i+1}
$$

Recalling that the first term corresponds to $i=2$, this means that the first few terms of the sequence of partial sums are

$$
\begin{aligned}
& s_{1}=-\frac{1}{1}+\frac{3}{2}-\frac{2}{3} \\
& s_{2}=\left(-\frac{1}{1}+\frac{3}{2}-\frac{2}{3}\right)+\left(-\frac{1}{2}+\frac{3}{3}-\frac{2}{4}\right) \\
& s_{3}=\left(-\frac{1}{1}+\frac{3}{2}-\frac{2}{3}\right)+\left(-\frac{1}{2}+\frac{3}{3}-\frac{2}{4}\right)+\left(-\frac{1}{3}+\frac{3}{4}-\frac{2}{5}\right) \\
& s_{4}=\left(-\frac{1}{1}+\frac{3}{2}-\frac{2}{3}\right)+\left(-\frac{1}{2}+\frac{3}{3}-\frac{2}{4}\right)+\left(-\frac{1}{3}+\frac{3}{4}-\frac{2}{5}\right)+\left(-\frac{1}{4}+\frac{3}{5}-\frac{2}{6}\right) .
\end{aligned}
$$

Observe that the $-\frac{2}{3}$ in the first term, the $+\frac{3}{3}$ in the second term, and the $-\frac{1}{3}$ in the third term all cancel out. Similarly, the $-\frac{2}{4}$ in the second term, the $+\frac{3}{4}$ in the third term, and the $-\frac{1}{4}$ in the fourth term all cancel out. Thus, for example, we can simplify s_{4} above to become

$$
s_{4}=-\frac{1}{1}+\frac{3}{2}-\frac{1}{2}-\frac{2}{5}+\frac{3}{4}-\frac{2}{6}
$$

The telescoping cancels out everything except the first two numbers in the first term, the first number in the second term, the last number in the second-last term, and the last two numbers in the last term.
Following this pattern, then, we can see that

$$
\begin{aligned}
s_{n} & =-\frac{1}{1}+\frac{3}{2}-\frac{1}{2}-\frac{2}{n+1}+\frac{3}{n+1}-\frac{2}{n+2} \\
& =\frac{1}{n+1}-\frac{2}{n+2} \\
\lim _{n \rightarrow \infty} s_{n} & =0-0 \\
& =0
\end{aligned}
$$

Thus we conclude that this is a convergent series, and

$$
\sum_{i=1}^{\infty} \frac{i^{3}-3}{3 i^{3}-i}=0
$$

[5] (c) We will first attempt to use the Divergence Test. We consider the corresponding function $f(x)=\sqrt[x]{x}=x^{\frac{1}{x}}$. As $x \rightarrow \infty$ this is an ∞^{0} indeterminate form, so we use l'Hôpital's Rule, letting

$$
y=\ln \left(x^{\frac{1}{x}}\right)=\frac{\ln (x)}{x}
$$

Then

$$
\lim _{x \rightarrow \infty} y \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

and so

$$
\lim _{x \rightarrow \infty} f(x)=e^{0}=1
$$

By the Evaluation Theorem, we can conclude that

$$
\lim _{i \rightarrow \infty} \sqrt[i]{i}=1 \neq 0
$$

as well, and thus this series is divergent by the Divergence Test.
[3] (d) Observe that

$$
\lim _{i \rightarrow \infty} \ln \left(\frac{2 i-1}{3 i+1}\right)=\ln \left(\lim _{i \rightarrow \infty} \frac{2 i-1}{3 i+1}\right)=\ln \left(\frac{2}{3}\right) \neq 0
$$

Hence the series is divergent by the Divergence Test.
[6]
(e) We can write

$$
\ln \left(\frac{2 i-1}{2 i+1}\right)=\ln (2 i-1)-\ln (2 i+1)
$$

Thus the first few terms of the sequence of partial sums are

$$
\begin{aligned}
& s_{1}=\ln (1)-\ln (3) \\
& s_{2}=[\ln (1)-\ln (3)]+[\ln (3)-\ln (5)]=\ln (1)-\ln (5) \\
& s_{3}=[\ln (1)-\ln (3)]+[\ln (3)-\ln (5)]+[\ln (5)-\ln (7)]=\ln (1)-\ln (7) \\
& s_{4}=[\ln (1)-\ln (3)]+[\ln (3)-\ln (5)]+[\ln (5)-\ln (7)]+[\ln (7)-\ln (9)]=\ln (1)-\ln (9) .
\end{aligned}
$$

In general, we can see that

$$
\begin{aligned}
s_{n} & =\ln (1)-\ln (2 n+1) \\
& =-\ln (2 n+1) \\
\lim _{n \rightarrow \infty} s_{n} & =-\infty .
\end{aligned}
$$

Since the sequence of partial sums diverges, we can conclude that this series is also divergent by the Divergent Test.
[4] 2. By the Chain Rule,

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t}
$$

Here,

$$
\frac{\partial z}{\partial x}=\cos (x) \cos (y), \quad \frac{\partial z}{\partial y}=-\sin (x) \sin (y), \quad \frac{d x}{d t}=\frac{1}{t}, \quad \frac{d y}{d t}=\frac{1}{\sqrt{t}} .
$$

Hence

$$
\frac{d z}{d t}=\frac{\cos (x) \cos (y)}{t}-\frac{\sin (x) \sin (y)}{2 \sqrt{t}}
$$

[6] 3. By the Chain Rule,

$$
f_{x}=f_{\alpha} \alpha_{x}+f_{\beta} \beta_{x}, \quad \text { and } \quad f_{y}=f_{\alpha} \alpha_{y}+f_{\beta} \beta_{y}
$$

but

$$
f_{z}=f_{\beta} \beta_{z}
$$

because α does not depend on z. We have

$$
\begin{gathered}
f_{\alpha}=\frac{\alpha}{\sqrt{\alpha^{2}-\beta^{2}}}, \quad f_{\beta}=\frac{-\beta}{\sqrt{\alpha^{2}-\beta^{2}}} \\
\alpha_{x}=\tan (y), \quad \alpha_{y}=x \sec ^{2}(y) \\
\beta_{x}=\frac{3 x^{2}}{y+3 z}, \quad \beta_{y}=\frac{-x^{3}}{(y+3 z)^{2}}, \quad \beta_{z}=\frac{-3 x^{3}}{(y+3 z)^{2}}
\end{gathered}
$$

Thus

$$
\begin{aligned}
& f_{x}=\frac{\alpha \tan (y)}{\sqrt{\alpha^{2}-\beta^{2}}}-\frac{3 \beta x^{2}}{(y+3 z) \sqrt{\alpha^{2}-\beta^{2}}} \\
& f_{y}=\frac{\alpha x \sec ^{2}(y)}{\sqrt{\alpha^{2}-\beta^{2}}}+\frac{\beta x^{3}}{(y+3 z) \sqrt{\alpha^{2}-\beta^{2}}} \\
& f_{z}=\frac{3 \beta x^{3}}{(y+3 z) \sqrt{\alpha^{2}-\beta^{2}}} .
\end{aligned}
$$

[5] 4. We rewrite the equation as $x^{2} y+y^{3} z^{2}-z^{4} x^{3}-x e^{y} \cosh (z)=0$ and set

$$
F(x, y, z)=x^{2} y+y^{3} z^{2}-z^{4} x^{3}-x e^{y} \cosh (z)
$$

Then

$$
\begin{aligned}
& F_{x}=2 x y-3 z^{4} x^{2}-e^{y} \cosh (z) \\
& F_{y}=x^{2}+3 y^{2} z^{2}-x e^{y} \cosh (z) \\
& F_{z}=2 y^{3} z-4 z^{3} x^{3}-x e^{y} \sinh (z)
\end{aligned}
$$

Hence we have

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{2 x y-3 z^{4} x^{2}-e^{y} \cosh (z)}{2 y^{3} z-4 z^{3} x^{3}-x e^{y} \sinh (z)}
$$

and

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{x^{2}+3 y^{2} z^{2}-x e^{y} \cosh (z)}{2 y^{3} z-4 z^{3} x^{3}-x e^{y} \sinh (z)} .
$$

