MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) We can write

$$
\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \frac{(4 \cdot 1) \cdot(4 \cdot 2) \cdot(4 \cdot 3) \cdots(4 \cdot i)}{4^{i}}=\lim _{i \rightarrow \infty} \frac{4^{i} i!}{4^{i}}=\lim _{i \rightarrow \infty} i!=\infty .
$$

Hence $\left\{a_{i}\right\}$ is divergent.
[4] (b) Observe that

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left|a_{i}\right| & =\lim _{i \rightarrow \infty} \frac{9-4^{i+2}}{4^{2 i-1}+3^{i}} \\
& =\lim _{i \rightarrow \infty} \frac{9-4^{i} \cdot 4^{2}}{4^{2 i} \cdot 4^{-1}+3^{i}} \\
& =\lim _{i \rightarrow \infty} \frac{9-16 \cdot 4^{i}}{\frac{1}{4} \cdot 16^{i}+3^{i}} \cdot \frac{\frac{1}{16^{i}}}{\frac{1}{16^{i}}} \\
& =\lim _{i \rightarrow \infty} \frac{\frac{9}{16^{i}}-16\left(\frac{1}{4}\right)^{i}}{\frac{1}{4}+\left(\frac{3}{16}\right)^{i}} \\
& =\frac{0-0}{\frac{1}{4}+0} \\
& =0
\end{aligned}
$$

Thus, by the Absolute Sequence Theorem,

$$
\lim _{i \rightarrow \infty} a_{i}=0 .
$$

[4] (c) This time,

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left|a_{i}\right| & =\lim _{i \rightarrow \infty} \frac{7^{i}-3^{i}}{7^{i}+3^{i}} \cdot \frac{\frac{1}{7^{i}}}{\frac{1}{7^{i}}} \\
& =\lim _{i \rightarrow \infty} \frac{1-\left(\frac{3}{7}\right)^{i}}{1+\left(\frac{3}{7}\right)^{i}} \\
& =\frac{1-0}{1+0} \\
& =1
\end{aligned}
$$

Since $\lim _{i \rightarrow \infty} a_{i} \neq 0$, the Absolute Sequence Theorem does not apply. However, this suggests that the odd terms of $\left\{a_{i}\right\}$ are tending towards -1 while the even terms tend towards 1 . Hence $\left\{a_{i}\right\}$ is a divergent sequence.
[4] (d) Since

$$
-1 \leq \cos (3 i) \leq 1
$$

we can write

$$
-\frac{i^{2}}{4 i^{3}-2 i^{2}+5} \leq \frac{i^{2} \cos (3 i)}{4 i^{3}-2 i^{2}+5} \leq \frac{i^{2}}{4 i^{3}-2 i^{2}+5} .
$$

However,

$$
\lim _{i \rightarrow \infty} \frac{i^{2}}{4 i^{3}-2 i^{2}+5} \cdot \frac{\frac{1}{i^{3}}}{\frac{1}{i^{3}}}=\lim _{i \rightarrow \infty} \frac{\frac{1}{i}}{4-\frac{2}{i^{2}}+\frac{5}{i^{3}}}=\frac{0}{4-0+0}=0 .
$$

Similarly,

$$
\lim _{i \rightarrow \infty}-\frac{i^{2}}{4 i^{3}-2 i^{2}+5}=0
$$

Thus, by the Squeeze Theorem,

$$
\lim _{i \rightarrow \infty} a_{i}=0 .
$$

[5] (e) The corresponding function is

$$
f(x)=\left[e^{x}+x\right]^{\frac{1}{x}}
$$

As $x \rightarrow \infty, f(x) \rightarrow \infty^{0}$, so this is an indeterminate form. Instead, we consider

$$
\begin{aligned}
y & =\ln \left(\left[e^{x}+x\right]^{\frac{1}{x}}\right) \\
& =\frac{1}{x} \ln \left(e^{x}+x\right) \\
& =\frac{\ln \left(e^{x}+x\right)}{x} .
\end{aligned}
$$

As $x \rightarrow \infty, y \rightarrow \frac{\infty}{\infty}$, so l'Hôpital's Rule applies. We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} y & =\stackrel{\mathrm{H}}{\lim _{x \rightarrow \infty}} \frac{\frac{1}{e^{x}+x} \cdot\left(e^{x}+1\right)}{1} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1} \\
& =\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}} \\
& =\lim _{x \rightarrow \infty} 1 \\
& =1
\end{aligned}
$$

Hence

$$
\lim _{x \rightarrow \infty} f(x)=e^{1}=e
$$

and so, by the Evaluation Theorem,

$$
\lim _{i \rightarrow \infty} a_{i}=e
$$

as well.
[6] 2. (a) Consider the corresponding function $f(x)=\sqrt{x^{2}+8}-x$. We have

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x^{2}+8}} \cdot 2 x-1=\frac{x}{\sqrt{x^{2}+8}}-1 .
$$

Observe that $\sqrt{x^{2}+8}>\sqrt{x^{2}}=x$, and so $\frac{x}{\sqrt{x^{2}+8}}<1$. Now we can conclude that

$$
f^{\prime}(x)<1-1=0,
$$

and therefore $\left\{a_{i}\right\}$ is monotonic decreasing.
For the bounds, we can now immediately conclude that $a_{1}=2$ is an upper bound. Furthermore, by the same reasoning as above,

$$
a_{i}=\sqrt{i^{2}+8}-i>i-i=0
$$

so 0 is a lower bound. Hence $\left\{a_{i}\right\}$ is bounded, with $0<a_{i}<2$ for all i.
[6]
(b) Here,

$$
a_{i}=\frac{(i!)^{2}}{(2 i)!} \Longrightarrow a_{i+1}=\frac{[(i+1)!]^{2}}{(2 i+2)!}
$$

We compute

$$
\frac{a_{i+1}}{a_{i}}=\frac{[(i+1)!]^{2}}{(2 i+2)!} \cdot \frac{(2 i)!}{(i!)^{2}}=\frac{(i+1)^{2}}{(2 i+1)(2 i+2)}=\frac{i+1}{2(2 i+1)}
$$

Observe that $2 i+1>i+1$ so

$$
\frac{a_{i+1}}{a_{i}}=\frac{i+1}{2(2 i+1)}<\frac{1}{2}<1 .
$$

Thus $\left\{a_{i}\right\}$ is monotonic decreasing.
This also tells us that $a_{1}=\frac{1}{2}$ is an upper bound. Additionally, $(i!)^{2}>0$ and $(2 i)!>0$ so $a_{i}>0$ for all i. Hence 0 is a lower bound. We can therefore conclude that $\left\{a_{i}\right\}$ is bounded, with $0<a_{i}<\frac{1}{2}$ for all i.
3. (a) First we have

$$
\begin{aligned}
& f_{x}(x, y)=6 x^{2} y^{2}-7 y^{3}+9 y-6 x \\
& f_{y}(x, y)=4 x^{3} y-21 x y^{2}+9 x-1
\end{aligned}
$$

Then

$$
\begin{aligned}
& f_{x x}(x, y)=12 x y^{2}-6 \\
& f_{x y}(x, y)=12 x^{2} y-21 y^{2}+9 \\
& f_{y y}(x, y)=4 x^{3}-42 x y
\end{aligned}
$$

[2] (b) We have

$$
\begin{aligned}
& f_{r}(r, \theta)=\frac{\theta^{2}}{1+r^{2} \theta^{4}} \\
& f_{\theta}(r, \theta)=\frac{2 r \theta}{1+r^{2} \theta^{4}}
\end{aligned}
$$

and so

$$
\begin{aligned}
& f_{r r}(r, \theta)=\frac{-2 r \theta^{6}}{\left(1+r^{2} \theta^{4}\right)^{2}} \\
& f_{r \theta}(r, \theta)=\frac{2 \theta\left(1+r^{2} \theta^{4}\right)-4 r^{2} \theta^{3}\left(\theta^{2}\right)}{\left(1+r^{2} \theta^{4}\right)^{2}}=\frac{2 \theta-2 r^{2} \theta^{5}}{\left(1+r^{2} \theta^{4}\right)^{2}} \\
& f_{\theta \theta}(r, \theta)=\frac{2 r\left(1+r^{2} \theta^{4}\right)-4 r^{2} \theta^{3}\left(\theta^{2}\right)}{\left(1+r^{2} \theta^{4}\right)^{2}}=\frac{2 r+2 r^{3} \theta^{4}-4 r^{2} \theta^{5}}{\left(1+r^{2} \theta^{4}\right)^{2}} .
\end{aligned}
$$

[4] 4. We have

$$
\begin{gathered}
\frac{\partial z}{\partial x}=3 e^{y}-7 y e^{x}, \quad \frac{\partial z}{\partial y}=3 x e^{y}-7 e^{x} \\
\frac{\partial^{2} z}{\partial x^{2}}=-7 y e^{x}, \quad \frac{\partial^{2} z}{\partial x \partial y}=3 e^{y}-7 e^{x}, \quad \frac{\partial^{2} z}{\partial y^{2}}=3 x e^{y} \\
\frac{\partial^{3} z}{\partial x^{3}}=-7 y e^{x}, \quad \frac{\partial^{3} z}{\partial x^{2} \partial y}=-7 e^{x}, \quad \frac{\partial^{3} z}{\partial x \partial y^{2}}=3 e^{y}, \quad \frac{\partial^{3} z}{\partial y^{3}}=3 x e^{y} .
\end{gathered}
$$

Thus

$$
\frac{\partial^{3} z}{\partial x^{3}}-y \frac{\partial^{3} z}{\partial x^{2} \partial y}=-7 y e^{x}-y\left(-7 e^{x}\right)=-7 y e^{x}+7 y e^{x}=0
$$

and

$$
x \frac{\partial^{3} z}{\partial x \partial y^{2}}-\frac{\partial^{3} z}{\partial y^{3}}=x\left(3 e^{y}\right)-3 x e^{y}=3 x e^{y}-3 x e^{y}=0
$$

as well. Since the two sides of the PDE are equal, we can conclude that $z=3 x e^{y}-7 y e^{x}$ is a solution of the PDE.

