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SOLUTIONS
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Hence {a;} is divergent.
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Thus, by the Absolute Sequence Theorem,

lim a; = 0.

1—00

[4] (c) This time,
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Since lim a; # 0, the Absolute Sequence Theorem does not apply. However, this suggests
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that the odd terms of {a;} are tending towards —1 while the even terms tend towards 1.

Hence {a;} is a divergent sequence.



4] (d) Since
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we can write
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5] (e) The corresponding function is
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As z — oo, f(x) = o0’ so this is an indeterminate form. Instead, we consider
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As v — oo, y — 22, so 'Hopital’s Rule applies. We have
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and so, by the Evaluation Theorem,
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2. (a)

Consider the corresponding function f(z) = va? + 8 — z. We have
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Observe that v a2 4+ 8 > va?2 = z, and so —— < 1. Now we can conclude that
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and therefore {a;} is monotonic decreasing,.

For the bounds, we can now immediately conclude that a; = 2 is an upper bound.
Furthermore, by the same reasoning as above,

a=Vi2+8—i>i—i=0,

so 0 is a lower bound. Hence {a;} is bounded, with 0 < a; < 2 for all 1.

Here,
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Observe that 20 +1 > 147+ 1 so
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Thus {a;} is monotonic decreasing.

This also tells us that a; = % is an upper bound. Additionally, (i!)> > 0 and (2i)! > 0

so a; > 0 for all ¢. Hence 0 is a lower bound. We can therefore conclude that {a;} is
bounded, with 0 < a; < % for all i.
First we have
fo(z,y) = 62%y® — Ty’ + 9y — 6z
fy(z,y) = 42’y — 21ay® + 9z — 1.
Then
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2] (b) We have
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[4] 4. We have
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as well. Since the two sides of the PDE are equal, we can conclude that z = 3ze¥ — Tye”

is a solution of the PDE.



