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[4] 1. (a) We compare the given series to Z 5= Z (5) , which is a convergent geometric

series. Then because v/i > 0, ' _
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and so the given series converges by the Direct Comparison Test.
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We compare the given series to Z 12 R Z —, which is a divergent p-series. (We could
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also include the coefficient of %, but this is not necessary.) Then
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so the given series diverges by the Limit Comparison Test.

Consider the function
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This is continuous and positive for x > 1. Furthermore,
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Thus f'(z) < 0 and so f(x) is decreasing for x > 1. Hence the given series meets the
requirements of the Integral Test. Then
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We use integration by parts with w = In(z) + 1 so dw = —dz and dv = — dr so
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Since the improper integral converges, the given series also converges by the Integral
Test.

Alternatively, a less obvious way to approach this problem is to observe that In(i) in-
creases as i — 00, so perhaps we can assume In(7) + 1 ~ ¢ and compare the given series
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to Z i = Z 3 a convergent p-series. Then
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Now we need ’'Hopital’s Rule, so we consider the limit of the corresponding function:
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by the Evaluation Theorem. Thus the given series again converges by the Limit Com-
parison Test.
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2. (a)

We can rewrite the given series as

=0 1=0

This is a convergent geometric series with sum

Observe that
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Thus
2=A12i+3)+ B(2i+1).

When i = —1, we have 2 = A(2) so A = 1. When i = —3, we have 2 = B(-2) so
B = —1. Thus
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and, in general,
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Thus

and so the telescoping series must converge with sum

We are told that the series is convergent so, by the contrapositive of the Divergence Test,
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Since this is a positive series, we can compare it with 5 a;, which we are told converges.
Then we have ()
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by part (a). Hence, by the Limit Comparison Test, Z(ai)2 also converges.



[4] 4. Observe that x and z both depend on ¢ while y does not. Thus, by the Chain Rule,
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(Z_Z} = In(y) - pcos(q) +32% - (=7)

= pln(y) cos(q) — 212>

8] 5. We have

Setting f,(x,y) =0 and f,(x,y) = 0, the second equation yields

1 1 0
—r— -y = — = 2.

Substituting this into the first equation, we have
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2 +1r-30=0

(x+6)(x—5)=0

so either z = —6 or © = 5. Thus the critical points are (—6, —6) and (5, 5).



Next we have

fm<x>y) = Sx
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For (z,y) = (—6,—6) we have
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so this is a local maximum because f,,(—6,—6) = —3 < 0.

For (z,y) = (5,5) we have
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so this is a saddle point.



