# MEMORIAL UNIVERSITY OF NEWFOUNDLAND <br> DEPARTMENT OF MATHEMATICS AND STATISTICS 

## SOLUTIONS

[4] 1. (a) We compare the given series to $\sum \frac{4^{i}}{5^{i}}=\sum\left(\frac{4}{5}\right)^{i}$, which is a convergent geometric series. Then because $\sqrt{i} \geq 0$,

$$
\frac{4^{i}}{\sqrt{i}+5^{i}}<\frac{4^{i}}{5^{i}}
$$

and so the given series converges by the Direct Comparison Test.
[4] (b) We compare the given series to $\sum \frac{2 i}{4 i^{2}} \approx \sum \frac{1}{i}$, which is a divergent $p$-series. (We could also include the coefficient of $\frac{1}{2}$, but this is not necessary.) Then

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{t_{i}}=\lim _{i \rightarrow \infty} \frac{2 i+7}{4 i^{2}+3 i} \cdot i=\lim _{i \rightarrow \infty} \frac{2 i^{2}+7 i}{4 i^{2}+3 i}=\frac{1}{2}
$$

so the given series diverges by the Limit Comparison Test.
[6] (c) Consider the function

$$
f(x)=\frac{\ln (x)+1}{x^{4}}
$$

This is continuous and positive for $x \geq 1$. Furthermore,

$$
f^{\prime}(x)=\frac{\frac{1}{x} \cdot x^{4}-4 x^{3}[\ln (x)+1]}{x^{8}}=\frac{-4 \ln (x)-3}{x^{5}}=-\frac{4 \ln (x)+3}{x^{5}}
$$

Thus $f^{\prime}(x)<0$ and so $f(x)$ is decreasing for $x \geq 1$. Hence the given series meets the requirements of the Integral Test. Then

$$
\int_{1}^{\infty} f(x)=\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{\ln (x)+1}{x^{4}} d x
$$

We use integration by parts with $w=\ln (x)+1$ so $d w=\frac{1}{x} d x$ and $d v=\frac{1}{x^{4}} d x$ so
$v=-\frac{1}{3 x^{3}}$. Thus

$$
\begin{aligned}
\int_{1}^{\infty} f(x) d x & =\lim _{T \rightarrow \infty}\left(\left[-\frac{1}{3 x^{3}} \cdot[\ln (x)+1]\right]_{1}^{T}-\int_{1}^{T}-\frac{1}{3 x^{3}} \cdot \frac{1}{x} d x\right) \\
& =\lim _{T \rightarrow \infty}\left(\left[-\frac{1}{3 x^{3}} \cdot[\ln (x)+1]\right]_{1}^{T}+\frac{1}{3} \int_{1}^{T} \frac{1}{x^{4}} d x\right) \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (x)}{3 x^{3}}-\frac{1}{3 x^{3}}-\frac{1}{9 x^{3}}\right]_{1}^{T} \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (x)}{3 x^{3}}-\frac{4}{9 x^{3}}\right]_{1}^{T} \\
& =\lim _{T \rightarrow \infty}\left[-\frac{\ln (T)}{3 T^{3}}-\frac{4}{9 T^{3}}+0+\frac{4}{9}\right] \\
& =\frac{4}{9}-\frac{1}{3} \lim _{T \rightarrow \infty} \frac{\ln (T)}{T^{3}} \\
& \stackrel{\mathrm{H}}{=} \frac{4}{9}-\frac{1}{3} \lim _{T \rightarrow \infty} \frac{\frac{1}{T}}{3 T^{2}} \\
& =\frac{4}{9}-\frac{1}{9} \lim _{T \rightarrow \infty} \frac{1}{T^{3}} \\
& =\frac{4}{9} .
\end{aligned}
$$

Since the improper integral converges, the given series also converges by the Integral Test.
Alternatively, a less obvious way to approach this problem is to observe that $\ln (i)$ increases as $i \rightarrow \infty$, so perhaps we can assume $\ln (i)+1 \approx i$ and compare the given series to $\sum \frac{i}{i^{4}}=\sum \frac{1}{i^{3}}$, a convergent $p$-series. Then

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{t_{i}}=\lim _{i \rightarrow \infty} \frac{\ln (i)+1}{i^{4}} \cdot i^{3}=\lim _{i \rightarrow \infty} \frac{\ln (i)+1}{i} .
$$

Now we need l'Hôpital's Rule, so we consider the limit of the corresponding function:

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)+1}{x} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

so

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{t_{i}}=0
$$

by the Evaluation Theorem. Thus the given series again converges by the Limit Comparison Test.
[4] 2. (a) We can rewrite the given series as

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i+1} 6^{i}}{9^{i-1}}=\sum_{i=0}^{\infty} \frac{(-1)^{i} \cdot(-1) \cdot 6^{i}}{9^{i} \cdot 9^{-1}}=-9 \sum_{i=0}^{\infty}\left(-\frac{6}{9}\right)^{i}=-9 \sum_{i=0}^{\infty}\left(-\frac{2}{3}\right)^{i}
$$

This is a convergent geometric series with sum

$$
-9 \cdot \frac{1}{1-\left(-\frac{2}{3}\right)}=-9 \cdot \frac{3}{5}=-\frac{27}{5}
$$

[6]
(b) Observe that

$$
\frac{2}{4 i^{2}+8 i+3}=\frac{2}{(2 i+1)(2 i+3)}=\frac{A}{2 i+1}+\frac{B}{2 i+3} .
$$

Thus

$$
2=A(2 i+3)+B(2 i+1)
$$

When $i=-\frac{1}{2}$, we have $2=A(2)$ so $A=1$. When $i=-\frac{3}{2}$, we have $2=B(-2)$ so $B=-1$. Thus

$$
\sum_{i=1}^{\infty} \frac{2}{4 i^{2}+8 i+3}=\sum_{i=1}^{\infty}\left(\frac{1}{2 i+1}-\frac{1}{2 i+3}\right)
$$

Then

$$
\begin{aligned}
& s_{1}=\frac{1}{3}-\frac{1}{5} \\
& s_{2}=\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)=\frac{1}{3}-\frac{1}{7} \\
& s_{3}=\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)=\frac{1}{3}-\frac{1}{9}
\end{aligned}
$$

and, in general,

$$
s_{n}=\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\cdots+\left(\frac{1}{2 n+1}-\frac{1}{2 n+3}\right)=\frac{1}{3}-\frac{1}{2 n+3} .
$$

Thus

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{3}-\frac{1}{2 n+3}\right)=\frac{1}{3}
$$

and so the telescoping series must converge with sum $\frac{1}{3}$.
[1] 3. (a) We are told that the series is convergent so, by the contrapositive of the Divergence Test,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} a_{i}=0 . \tag{3}
\end{equation*}
$$

(b) Since this is a positive series, we can compare it with $\sum a_{i}$, which we are told converges. Then we have

$$
\lim _{i \rightarrow \infty} \frac{\left(a_{i}\right)^{2}}{a_{i}}=\lim _{i \rightarrow \infty} a_{i}=0
$$

by part (a). Hence, by the Limit Comparison Test, $\sum\left(a_{i}\right)^{2}$ also converges.
[4] 4. Observe that $x$ and $z$ both depend on $q$ while $y$ does not. Thus, by the Chain Rule,

$$
\frac{\partial w}{\partial q}=\frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial q}+\frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial q}
$$

Here

$$
\begin{aligned}
& \frac{\partial w}{\partial x}=\ln (y) \\
& \frac{\partial w}{\partial z}=3 z^{2} \\
& \frac{\partial x}{\partial q}=p \cos (q) \\
& \frac{\partial z}{\partial q}=-7
\end{aligned}
$$

so

$$
\begin{aligned}
\frac{\partial w}{\partial q} & =\ln (y) \cdot p \cos (q)+3 z^{2} \cdot(-7) \\
& =p \ln (y) \cos (q)-21 z^{2}
\end{aligned}
$$

[8] 5. We have

$$
\begin{aligned}
f_{x}(x, y) & =\frac{1}{9} x^{2}+\frac{1}{9} y-\frac{10}{3} \\
f_{y}(x, y) & =\frac{1}{9} x-\frac{1}{9} y
\end{aligned}
$$

Setting $f_{x}(x, y)=0$ and $f_{y}(x, y)=0$, the second equation yields

$$
\frac{1}{9} x-\frac{1}{9} y=0 \quad \Longrightarrow \quad y=x
$$

Substituting this into the first equation, we have

$$
\begin{aligned}
\frac{1}{9} x^{2}+\frac{1}{9} y-\frac{10}{3} & =0 \\
\frac{1}{9} x^{2}+\frac{1}{9} x-\frac{10}{3} & =0 \\
x^{2}+x-30 & =0 \\
(x+6)(x-5) & =0
\end{aligned}
$$

so either $x=-6$ or $x=5$. Thus the critical points are $(-6,-6)$ and $(5,5)$.

Next we have

$$
\begin{aligned}
f_{x x}(x, y) & =\frac{2}{9} x \\
f_{x y}(x, y) & =\frac{1}{9} \\
f_{y y}(x, y) & =-\frac{1}{9} .
\end{aligned}
$$

For $(x, y)=(-6,-6)$ we have

$$
D=\left(-\frac{4}{3}\right) \cdot\left(-\frac{1}{9}\right)-\left(\frac{1}{9}\right)^{2}=\frac{11}{81}>0
$$

so this is a local maximum because $f_{x x}(-6,-6)=-\frac{4}{3}<0$.
For $(x, y)=(5,5)$ we have

$$
D=\left(\frac{10}{9}\right) \cdot\left(-\frac{1}{9}\right)-\left(\frac{1}{9}\right)^{2}=-\frac{11}{81}<0
$$

so this is a saddle point.

