MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 2

MATH 2000
FALL 2018

SOLUTIONS

[4] 1. (a) The sequence is defined by a rational expression, so we can write

$$
\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \frac{24 i^{3}-40 i^{2}}{12 i^{3}-16 i^{2}-3 i} \cdot \frac{\frac{1}{i^{3}}}{\frac{1}{i^{3}}}=\lim _{i \rightarrow \infty} \frac{24-\frac{40}{i}}{12-\frac{16}{i}-\frac{3}{i^{2}}}=\frac{24-0}{12-0-0}=2 .
$$

[5] (b) This is a geometric expression, so we can write it as

$$
a_{i}=\frac{2^{4 i} \cdot 2^{-1}}{3^{3 i} \cdot 3^{2}}=\frac{1}{18} \cdot \frac{16^{i}}{27^{i}}=\frac{1}{18}\left(\frac{16}{27}\right)^{i} .
$$

Hence this is a geometric sequence with common ratio $|r|=\frac{16}{27}<1$ and so

$$
\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \frac{1}{18}\left(\frac{16}{27}\right)^{i}=0
$$

[5] (c) This expression is comprised of geometric terms, so first we rewrite it as

$$
a_{i}=\frac{3^{2 i} \cdot 3^{1}+6^{i}}{5-7^{i} \cdot 7^{2}}=\frac{3 \cdot 9^{i}+6^{i}}{5-49 \cdot 7^{i}} .
$$

The dominant term in the denominator is 7^{i}, so we have

$$
\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \frac{3 \cdot 9^{i}+6^{i}}{5-49 \cdot 7^{i}} \cdot \frac{\frac{1}{7^{i}}}{\frac{1}{7^{i}}}=\lim _{i \rightarrow \infty} \frac{3\left(\frac{9}{7}\right)^{i}+\left(\frac{6}{7}\right)^{i}}{5\left(\frac{1}{7}\right)^{i}-49}=\lim _{i \rightarrow \infty} \frac{3\left(\frac{9}{7}\right)^{i}+0}{0-49}=-\frac{1}{49} \lim _{i \rightarrow \infty}\left(\frac{9}{7}\right)^{i}
$$

which does not exist because the remaining expression is a geometric sequence with common ratio $|r|=\frac{9}{7}>1$.
[5] (d) We can write

$$
\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} \frac{(-1)^{i}}{3^{i}} \cdot \lim _{i \rightarrow \infty} \frac{i}{(i+1)^{2}}
$$

as long as the two limits on the righthand side exist. First,

$$
\lim _{i \rightarrow \infty} \frac{(-1)^{i}}{3^{i}}=\lim _{i \rightarrow \infty}\left(-\frac{1}{3}\right)^{i}=0
$$

since this is a geometric sequence with common ratio $|r|=\frac{1}{3}<1$. Next,

$$
\lim _{i \rightarrow \infty} \frac{i}{(i+1)^{2}}=\lim _{i \rightarrow \infty} \frac{i}{i^{2}+2 i+1} \cdot \frac{\frac{1}{i^{2}}}{\frac{1}{i^{2}}}=\lim _{i \rightarrow \infty} \frac{\frac{1}{i}}{1+\frac{2}{i}+\frac{1}{i^{2}}}=\frac{0}{1+0+0}=0 .
$$

Hence

$$
\lim _{i \rightarrow \infty} a_{i}=0 \cdot 0=0
$$

[2]
2. (a) By direct substitution,

$$
\lim _{(x, y) \rightarrow(4,8)} \frac{2 y-x}{x^{2}-2 x y-3 x+6 y}=\frac{16-4}{16-64-12+48}=-1 .
$$

[5] (b) This time, direct substitution results in a $\frac{0}{0}$ indeterminate form. However, we can factor both the numerator and the denominator and write

$$
\begin{aligned}
\lim _{(x, y) \rightarrow(8,4)} \frac{2 y-x}{x^{2}-2 x y-3 x+6 y} & =\lim _{(x, y) \rightarrow(8,4)} \frac{-(x-2 y)}{x(x-2 y)-3(x-2 y)} \\
& =\lim _{(x, y) \rightarrow(8,4)} \frac{-(x-2 y)}{(x-2 y)(x-3)} \\
& =\lim _{(x, y) \rightarrow(8,4)} \frac{-1}{x-3} \\
& =-\frac{1}{5} .
\end{aligned}
$$

[6] (c) Again, direct substitution results in a $\frac{0}{0}$ indeterminate form, and this time it is not possible to factor and cancel. Thus we will attempt to prove that the limit does not exist. Along the line $y=1$, the limit becomes

$$
\lim _{(x, y) \rightarrow(-3,1)} \frac{x+4 y-1}{3 y-2 x-9}=\lim _{x \rightarrow-3} \frac{x+4-1}{3-2 x-9}=\lim _{x \rightarrow-3} \frac{x+3}{-2(x+3)}=\lim _{x \rightarrow-3} \frac{1}{-2}=-\frac{1}{2} .
$$

Along the line $x=-3$, it becomes

$$
\lim _{(x, y) \rightarrow(-3,1)} \frac{x+4 y-1}{3 y-2 x-9}=\lim _{y \rightarrow 1} \frac{-3+4 y-1}{3 y+6-9}=\lim _{y \rightarrow 1} \frac{4(y-1)}{3(y-1)}=\lim _{y \rightarrow 1} \frac{4}{3}=\frac{4}{3} .
$$

Since these limits are not equal, we conclude that the limit does not exist.
(d) Once again, direct substitution results in a $\frac{0}{0}$ indeterminate form, and we will attempt to demonstrate that the limit does not exist. Along $y=0$, the limit becomes

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x y^{2}}{x^{2}+y^{4}}=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=\lim _{x \rightarrow 0} 0=0
$$

Along $x=0$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x y^{2}}{x^{2}+y^{4}}=\lim _{y \rightarrow 0} \frac{0}{y^{4}}=\lim _{y \rightarrow 0} 0=0 .
$$

Along $y=x$ the limit is

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x y^{2}}{x^{2}+y^{4}}=\lim _{x \rightarrow 0} \frac{7 x^{3}}{x^{2}+x^{4}}=\lim _{x \rightarrow 0} \frac{7 x}{1+x^{2}}=0 .
$$

Along $y=x^{2}$, we can write

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x y^{2}}{x^{2}+y^{4}}=\lim _{x \rightarrow 0} \frac{7 x^{5}}{x^{2}+x^{8}}=\lim _{x \rightarrow 0} \frac{7 x^{3}}{1+x^{6}}=0 .
$$

But along $x=y^{2}$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x y^{2}}{x^{2}+y^{4}}=\lim _{y \rightarrow 0} \frac{7 y^{4}}{y^{4}+y^{4}}=\lim _{y \rightarrow 0} \frac{7}{2}=\frac{7}{2} .
$$

Since this is not the same as the limit along the other paths, it must be that the limit does not exist.

