MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECtions $2.8 \& 2.9$
Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) The region of integration is defined by $0 \leq x \leq \sqrt{16-y^{2}}$ and $-4 \leq y \leq 4$, which is the semicircle centered on the origin with radius 4 lying in the positive x-plane. In polar coordinates this is equivalent to $0 \leq r \leq 4,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. As well, the function $\sqrt{x^{2}+y^{2}+9}=\sqrt{r^{2}+9}$. The integral can thus be written

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{4} \sqrt{r^{2}+9} r d r d \theta=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left[\frac{1}{3}\left(r^{2}+9\right)^{\frac{3}{2}}\right]_{0}^{4}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{98}{3} d \theta=\left[\frac{98}{3} \theta\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{98 \pi}{3}
$$

(b) First we have

$$
x^{2}+(y-1)^{2}=1 \quad \Longrightarrow \quad x^{2}+y^{2}=2 y \quad \Longrightarrow \quad r^{2}=2 r \sin (\theta) \quad \Longrightarrow \quad r=2 \sin (\theta)
$$

Furthermore, the entire circle is traced out for values of θ ranging from 0 to π. So in polar coordinates, D is defined by $0 \leq \theta \leq \pi$ and $0 \leq r \leq 2 \sin (\theta)$. Also, $\sqrt{x^{2}+y^{2}}=r$. Thus, the integral becomes

$$
\begin{aligned}
& \int_{0}^{\pi} \int_{0}^{2 \sin (\theta)} r^{2} d r d \theta \\
= & \int_{0}^{\pi}\left[\frac{1}{3} r^{3}\right]_{0}^{2 \sin (\theta)} d \theta=\int_{0}^{\pi} \frac{8}{3} \sin ^{3} \theta d \theta=\frac{8}{3} \int_{0}^{\pi}\left[1-\cos ^{2}(\theta)\right] \sin (\theta) d \theta \\
= & \frac{8}{3} \int_{0}^{\pi}\left[\sin (\theta)-\cos ^{2}(\theta) \sin (\theta)\right] d \theta=\frac{8}{3}\left[-\cos (\theta)+\frac{1}{3} \cos ^{3}(\theta)\right]_{0}^{\pi}=\frac{32}{9} .
\end{aligned}
$$

(c) The line $y=x$ is the same as the polar function $\theta=\frac{\pi}{4}$. (If this is not intuitively obvious, note that $y=x$ means $r \sin (\theta)=r \cos (\theta)$ so $\sin (\theta)=\cos (\theta)$ and $\tan (\theta)=1$, leading to the same conclusion.) Furthermore, D lies between the circles centered at the origin with radius 3 and 5 . Hence D is defined by $0 \leq \theta \leq \frac{\pi}{4}$ and $3 \leq r \leq 5$. Also,

$$
\frac{y^{2}}{x^{2}}=\frac{r^{2} \sin ^{2}(\theta)}{r^{2} \cos ^{2}(\theta)}=\tan ^{2}(\theta)
$$

The integral thus becomes

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \int_{3}^{5} r \tan ^{2}(\theta) d r d \theta & =\int_{0}^{\frac{\pi}{4}}\left[\frac{1}{2} r^{2} \tan ^{2}(\theta)\right]_{3}^{5} d \theta=\int_{0}^{\frac{\pi}{4}} 8 \tan ^{2}(\theta) d \theta \\
& =8 \int_{0}^{\frac{\pi}{4}}\left[\sec ^{2}(\theta)-1\right] d \theta=8[\tan (\theta)-\theta]_{0}^{\frac{\pi}{4}}=8\left[1-\frac{\pi}{4}\right]=8-2 \pi
\end{aligned}
$$

2. (a) First we solve for the points of intersection of $y=x$ and $y=x^{2}: x=x^{2} \Longrightarrow$ $x(x-1)=0$ so $x=0$ and $x=1$. Thus the region of integration is defined by $0 \leq x \leq 1$ and $x^{2} \leq y \leq x$. The integral is

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{x^{2}}^{x}(1-x y) d y d x=\int_{0}^{1}\left[y-\frac{1}{2} x y^{2}\right]_{x^{2}}^{x} d x=\int_{0}^{1}\left[x-\frac{1}{2} x^{3}-x^{2}+\frac{1}{2} x^{5}\right] d x \\
& =\left[\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{3} x^{3}+\frac{1}{12} x^{6}\right]_{0}^{1}=\frac{1}{8}
\end{aligned}
$$

(b) First we find the points of intersection of $x=y$ and $x=y^{2}-y$:

$$
y=y^{2}-y \quad \Longrightarrow \quad y^{2}-2 y=0 \quad \Longrightarrow \quad y(y-2)=0
$$

so $y=0$ and $y=2$. Then the region of integration is defined by $0 \leq y \leq 2$ and $y^{2}-y \leq x \leq y$ so the integral is

$$
\begin{aligned}
V & =\int_{0}^{2} \int_{y^{2}-y}^{y}\left(3 x^{2}+y^{2}\right) d x d y=\int_{0}^{2}\left[x^{3}+x y^{2}\right]_{y^{2}-y}^{y} d y=\int_{0}^{2}\left[-y^{6}+3 y^{5}-4 y^{4}+4 y^{3}\right] d y \\
& =\left[-\frac{1}{7} y^{7}+\frac{1}{2} y^{6}-\frac{4}{5} y^{5}+y^{4}\right]_{0}^{2}=\frac{144}{35}
\end{aligned}
$$

(c) To find the points of intersection of $y=x^{2}$ and $x=y^{2}$, we substitute the former into the latter to get

$$
x=x^{4} \quad \Longrightarrow \quad x^{4}-x=0 \quad \Longrightarrow \quad x\left(x^{3}-1\right)=0
$$

so $x=0$ and $x=1$. Also, we can write the function $x=y^{2}$ as $y=\sqrt{x}$ or $y=-\sqrt{x}$; however, the region of integration is bouned above only by the former. Hence the region is defined by $0 \leq x \leq 1$ and $x^{2} \leq y \leq \sqrt{x}$. The volume of S is

$$
\begin{aligned}
V & =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} x y d y d x=\int_{0}^{1}\left[\frac{1}{2} x y^{2}\right]_{x^{2}}^{\sqrt{x}} d x=\int_{0}^{1}\left[\frac{1}{2} x^{2}-\frac{1}{2} x^{5}\right] d x \\
& =\left[\frac{1}{6} x^{3}-\frac{1}{12} x^{6}\right]_{0}^{1}=\frac{1}{12}
\end{aligned}
$$

(d) Due to the curved nature of the region of integration, we should use polar coordinates. Then the region is defined by $0 \leq \theta \leq 2 \pi$ and $2 \leq r \leq 5$. Furthermore, the function $\sqrt{x^{2}+y^{2}}=\sqrt{r^{2}}=r$. Thus

$$
V=\int_{0}^{2 \pi} \int_{2}^{5} r^{2} d r d \theta=\int_{0}^{2 \pi}\left[\frac{1}{3} r^{3}\right]_{2}^{5} d \theta=\int_{0}^{2 \pi} 39 d \theta=[39 \theta]_{0}^{2 \pi}=78 \pi
$$

(e) The equations of the lines bounding the triangle are $y=1, x=2 y-1$ and $x=5-y$ so the region of integration is defined by $1 \leq y \leq 2$ and $2 y-1 \leq x \leq 5-y$. Then we have

$$
\begin{aligned}
V & =\int_{1}^{2} \int_{2 y-1}^{5-y}(1+x y) d x d y=\int_{1}^{2}\left[x+\frac{1}{2} x^{2} y\right]_{2 y-1}^{5-y} d y=\int_{1}^{2}\left[6+9 y-3 y^{2}-\frac{3}{2} y^{3}\right] d y \\
& =\left[6 y+\frac{9}{2} y^{2}-y^{3}-\frac{3}{8} y^{4}\right]_{1}^{2}=\frac{55}{8}
\end{aligned}
$$

(f) The region of integration will be the intersection of the paraboloid with the $x y$-plane (that is, the plane defined by the equation $z=0$), which is the curve defined by $4-x^{2}-y^{2}=0$, or $x^{2}+y^{2}=4$. Consequently, it makes sense to use polar coordinates; as such, the region of integration is defined by $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 2$. The function $4-x^{2}-y^{2}=4-r^{2}$, so then

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{2}\left(4 r-r^{3}\right) d r d \theta=\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{0}^{2} d \theta \\
& =\int_{0}^{2 \pi} 4 d \theta=[4 \theta]_{0}^{2 \pi}=8 \pi
\end{aligned}
$$

