MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECtion 2.7

Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) We may integrate with respect to x and y in either order, for instance:

$$
\begin{aligned}
\iint_{D} \frac{1}{\sqrt{16-x^{2}}} d A & =\int_{-2}^{2} \int_{0}^{7} \frac{1}{\sqrt{16-x^{2}}} d y d x=\int_{-2}^{2}\left[\frac{y}{\sqrt{16-x^{2}}}\right]_{0}^{7} d x \\
& =\int_{-2}^{2} \frac{7}{\sqrt{16-x^{2}}} d x=\left[7 \arcsin \left(\frac{x}{4}\right)\right]_{-2}^{2}=\frac{7 \pi}{3}
\end{aligned}
$$

(b) We can write

$$
D=\{(x, y) \mid 0 \leq x \leq 3,0 \leq y \leq x\}
$$

Then the integral becomes

$$
\begin{aligned}
\iint_{D} \frac{1}{\sqrt{16-x^{2}}} d A & =\int_{0}^{3} \int_{0}^{x} \frac{1}{\sqrt{16-x^{2}}} d y d x=\int_{0}^{3}\left[\frac{y}{\sqrt{16-x^{2}}}\right]_{0}^{x}=\int_{0}^{3} \frac{x}{\sqrt{16-x^{2}}} d x \\
& =\left[-\sqrt{16-x^{2}}\right]_{0}^{3}=4-\sqrt{7}
\end{aligned}
$$

2. (a) $\int_{2}^{4} \int_{1}^{\sqrt{y}} x\left(y^{2}-5 y\right) d x d y=\int_{2}^{4}\left[x^{2}\left(y^{2}-5 y\right)\right]_{1}^{\sqrt{y}} d y=\int_{2}^{4} \frac{1}{2}\left(y^{2}-5 y\right)(y-1) d y$

$$
=\int_{2}^{4}\left[\frac{1}{2} y^{3}-3 y^{2}+\frac{5}{2} y\right] d y=\left[\frac{1}{8} y^{4}-y^{3}+\frac{5}{4} y^{2}\right]_{2}^{4}=-11
$$

(b) We have

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y^{2}} \frac{y}{x^{2}+y^{2}} d x d y & =\int_{0}^{1}\left[\frac{y}{y} \arctan \left(\frac{x}{y}\right)\right]_{0}^{y^{2}} d y=\int_{0}^{1}\left[\arctan \left(\frac{x}{y}\right)\right]_{0}^{y^{2}} d y \\
& =\int_{0}^{1} \arctan (y) d y=\left[y \arctan (y)-\frac{1}{2} \ln \left|1+y^{2}\right|\right]_{0}^{1} \\
& =\frac{\pi}{4}-\frac{1}{2} \ln (2)
\end{aligned}
$$

where the latter integral can be evaluated using integration by parts.
(c) We have

$$
\begin{aligned}
\int_{1}^{\sqrt[4]{10}} \int_{0}^{x} y^{2} \sqrt{x^{4}-1} d y d x & =\int_{1}^{\sqrt[4]{10}}\left[\frac{1}{3} y^{3} \sqrt{x^{4}-1}\right]_{0}^{x} d x=\int_{1}^{\sqrt[4]{10}}\left[\frac{1}{3} x^{3} \sqrt{x^{4}-1}\right] d x \\
& =\left[\frac{1}{18}\left(x^{4}-1\right)^{\frac{3}{2}}\right]_{1}^{\sqrt[4]{10}}=\frac{3}{2}
\end{aligned}
$$

where the second integral can be evaluated using u-substitution.
(d) We have

$$
\begin{aligned}
\int_{\frac{\pi}{2}}^{0} \int_{0}^{\sin (x)} e^{\cos (x)} d y d x & =\int_{\frac{\pi}{2}}^{0}\left[y e^{\cos (x)}\right]_{0}^{\sin (x)} d x=\int_{\frac{\pi}{2}}^{0} \sin (x) e^{\cos (x)} d x \\
& =\left[-e^{\cos (x)}\right]_{\frac{\pi}{2}}^{0}=1-e
\end{aligned}
$$

where again we may use u-substitution to evaluate the final integral.
3. (a) The region of integration can be written as $0 \leq y \leq x$ and $0 \leq x \leq \sqrt{\pi}$. Hence the integral becomes

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \sin \left(x^{2}\right) d y d x & =\int_{0}^{\sqrt{\pi}}\left[y \sin \left(x^{2}\right)\right]_{0}^{x} d x=\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x \\
& =\left[-\frac{1}{2} \cos \left(x^{2}\right)\right]_{0}^{\sqrt{\pi}}=1
\end{aligned}
$$

(b) The region of integration can be written as $0 \leq x \leq \sqrt{y}$ and $0 \leq y \leq 9$. Hence the integral becomes

$$
\int_{0}^{9} \int_{0}^{\sqrt{y}} x e^{y^{2}} d x d y=\int_{0}^{9}\left[\frac{1}{2} x^{2} e^{y^{2}}\right]_{0}^{\sqrt{y}} d y=\int_{0}^{9} \frac{1}{2} y e^{y^{2}} d y=\left[\frac{1}{4} e^{y^{2}}\right]_{0}^{9}=\frac{1}{4} e^{81}-\frac{1}{4}
$$

(c) The region of integration can be written as $0 \leq y \leq 2 x$ and $0 \leq x \leq 2$. Hence the integral becomes

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{2 x} \frac{y}{x^{3}+1} d y d x & =\int_{0}^{2}\left[\frac{y^{2}}{2\left(x^{3}+1\right)}\right]_{0}^{2 x} d x=\int_{0}^{2} \frac{2 x^{2}}{x^{3}+1} d x \\
& =\left[\frac{2}{3} \ln \left|x^{3}+1\right|\right]_{0}^{2}=\frac{4}{3} \ln (3)
\end{aligned}
$$

(d) The region of integration can be written as $0 \leq x \leq \sin (y)$ and $0 \leq y \leq \frac{\pi}{2}$. Hence the integral becomes

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin (y)} \sqrt{1+\cos (y)} d x d y & =\int_{0}^{\frac{\pi}{2}}[x \sqrt{1+\cos (y)}]_{0}^{\sin (y)} d y \\
& =\int_{0}^{\frac{\pi}{2}} \sin (y) \sqrt{1+\cos (y)} d y \\
& =\left[-\frac{2}{3}[1+\cos (y)]^{\frac{3}{2}}\right]_{0}^{\frac{\pi}{2}}=\frac{4 \sqrt{2}-2}{3}
\end{aligned}
$$

4. (a) First we need to solve for the points of intersection of the two curves. We set

$$
x^{2}+2 x=24-x^{2} \quad \Longrightarrow \quad 2(x+4)(x-3)=0
$$

so $x=-4$ or $x=3$. Then the region D is bounded by $-4 \leq x \leq 3$ and $x^{2}+2 x \leq y \leq$ $24-x^{2}$. (The order of the latter inequality may be easily checked by graphing, or by substitution of a value of x in the interval $(-4,3)$, such as $x=0$.) Then we have

$$
\begin{aligned}
A=\iint_{D} d A & =\int_{-4}^{3} \int_{x^{2}+2 x}^{24-x^{2}} d y d x \\
& =\int_{-4}^{3}[y]_{x^{2}+2 x}^{24-x^{2}} d x \\
& =\int_{-4}^{3}\left[24-2 x-2 x^{2}\right] d x \\
& =\left[24 x-x^{2}-\frac{2}{3} x^{3}\right]_{-4}^{3} \\
& =\frac{343}{3}
\end{aligned}
$$

(b) Again we begin by solving for the points of intersection. First we note that $y=9-3 x$ can also be written as $x=3-\frac{1}{3} y$. Then we have

$$
\sqrt{9-y}=3-\frac{1}{3} y \quad \Longrightarrow \quad 9-y=9-2 y+\frac{1}{9} y^{2} \quad \Longrightarrow \quad y\left(\frac{1}{9} y-1\right)=0
$$

so $y=0$ or $y=9$. Thus the region R is defined by $0 \leq y \leq 9$ and $3-\frac{1}{3} y \leq x \leq \sqrt{9-y}$. Then we have

$$
\begin{aligned}
A=\iint_{R} d A & =\int_{0}^{9} \int_{\frac{1}{3} y}^{\sqrt{9-y}} d x d y \\
& =\int_{0}^{9}[x]_{\frac{1}{3} y}^{\sqrt{9-y}} d y \\
& =\int_{0}^{9}\left[\sqrt{9-y}-\frac{1}{3} y\right] d y \\
& =\left[-\frac{2}{3}(9-y)^{\frac{3}{2}}-\frac{1}{6} y^{2}\right]_{0}^{9} \\
& =\frac{9}{2}
\end{aligned}
$$

