MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECtion 2.2

Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) Since this function is a polynomial, we can simply use direct substitution:

$$
\lim _{(x, y) \rightarrow(3,-1)} x^{2} y^{3}+5 x y-6 y+9=3^{2}(-1)^{3}+5(3)(-1)-4(-1)+9=-9-15+4+9=-11
$$

(b) Direct substitution results in a $\frac{0}{0}$ indeterminate form, but we can factor and cancel:

$$
\lim _{(x, y) \rightarrow(2,5)} \frac{x y-4 x-2 y+8}{x^{2}-x-2}=\lim _{(x, y) \rightarrow(2,5)} \frac{(x-2)(y-4)}{(x-2)(x+1)}=\lim _{(x, y) \rightarrow(2,5)} \frac{y-4}{x+1}=\frac{1}{3} .
$$

(c) First we let $(x, y) \rightarrow(0,0)$ along the line $y=0$ so the limit becomes

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2}+\sin ^{2}(y)}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2}}{x^{2}}=\lim _{(x, y) \rightarrow(0,0)} 4=4 .
$$

Next let $(x, y) \rightarrow(0,0)$ along the line $x=0$ so the limit becomes

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{2}+\sin ^{2}(y)}{x^{2}+y^{2}}=\lim _{y \rightarrow 0} \frac{\sin ^{2}(y)}{y^{2}}=\lim _{y \rightarrow 0}\left(\frac{\sin (y)}{y}\right)^{2}=1^{2}=1
$$

Since these values differ, the limit does not exist.
(d) First we let $(x, y) \rightarrow(0,0)$ along the line $y=0$ so the limit becomes

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{12 x^{4} y}{x^{6}+3 y^{3}}=\lim _{x \rightarrow 0} \frac{0}{x^{6}}=\lim _{x \rightarrow 0} 0=0 .
$$

Next we could try letting $(x, y) \rightarrow(0,0)$ along the line $x=0$, but then we obtain

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{12 x^{4} y}{x^{6}+3 y^{3}}=\lim _{y \rightarrow 0} \frac{0}{3 y^{3}}=\lim _{x \rightarrow 0} 0=0,
$$

which is the same value we have already computed. Similarly, if we use the path $y=x$, we get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{12 x^{4} y}{x^{6}+3 y^{3}}=\lim _{x \rightarrow 0} \frac{12 x^{4}}{x^{6}+3 x^{3}}=\lim _{x \rightarrow 0} \frac{12 x}{x^{3}+3}=0 .
$$

But if we consider the path $y=x^{2}$, we have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{12 x^{4} y}{x^{6}+3 y^{3}}=\lim _{x \rightarrow 0} \frac{12 x^{6}}{4 x^{6}}=\lim _{x \rightarrow 0} 3=3
$$

and since this differs from the previous values, we conclude that the limit does not exist.

