MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Section 2.1	Math 2000 Worksheet	FALL

SOLUTIONS

2018

- 1. (a) We require $x + y \ge 0$, or $y \ge -x$. Hence the domain is the set of all points lying on or above the line y = -x.
 - (b) We require $x \ge 0$ and $y \ge 0$, so the domain is the set of all points lying in the first quadrant of the xy-plane (including the axes).
 - (c) We require $xy 3 \neq 0$, so $y \neq \frac{3}{x}$. Hence the domain is the set of all points not lying on the hyperbola with the equation $y = \frac{3}{x}$.
 - (d) We require $16 x^2 y^2 \ge 0$ so $x^2 + y^2 \le 16$, which is the interior of the circle of radius 4 centred at the origin (including the circle). We further require $x^2 + y^2 1 > 0$ so $x^2 + y^2 > 1$, which is the exterior of the circle of radius 1 centred at the origin (excluding the circle). So the domain of the function is the set of points outside the circle of radius 1 but inside the circle of radius 4 (including this latter circle).