MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[4] 1. (a) We can write

$$
\frac{i!}{(i+3)!}=\frac{1 \cdot 2 \cdot 3 \cdots i}{1 \cdot 2 \cdot 3 \cdots i(i+1)(i+2)(i+3)}=\frac{1}{(i+1)(i+2)(i+3)}=\frac{1}{i^{3}+6 i^{2}+11 i+6} .
$$

[4] (b) We can write

$$
\frac{(4 i)!}{(3 i)!}=\frac{1 \cdot 2 \cdot 3 \cdots(3 i)(3 i+1)(3 i+2) \cdots(4 i)}{1 \cdot 2 \cdot 3 \cdots(3 i)}=(3 i+1)(3 i+2) \cdots(4 i)
$$

[4] (c) Both the numerator and the denominator are products of odd integers. However, the smallest factor in the numerator is 7 and the largest is $2 i+5$, while the smallest factor in the denominator is 1 and the largest is $2 i-1$, so not every factor cancels:

$$
\begin{aligned}
\frac{7 \cdot 9 \cdot 11 \cdots(2 i+5)}{1 \cdot 3 \cdot 5 \cdots(2 i-1)} & =\frac{7 \cdot 9 \cdot 11 \cdots(2 i-1)(2 i+1)(2 i+3)(2 i+5)}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdots(2 i-1)} \\
& =\frac{(2 i+1)(2 i+3)(2 i+5)}{1 \cdot 3 \cdot 5} \\
& =\frac{(2 i+1)(2 i+3)(2 i+5)}{15} \\
& =\frac{8 i^{3}+36 i^{2}+46 i+15}{15}
\end{aligned}
$$

[2] 2. (a) According to the formula, we have

$$
\begin{aligned}
& a_{1}=(-1) \frac{1^{2}+1}{1^{2}+1}=-1 \\
& a_{2}=(-1)^{2} \frac{2^{2}+1}{2^{2}+2}=\frac{5}{6} \\
& a_{3}=(-1)^{3} \frac{3^{2}+1}{3^{2}+3}=-\frac{5}{6} \\
& a_{4}=(-1)^{4} \frac{4^{2}+1}{4^{2}+4}=\frac{17}{20} \\
& a_{5}=(-1)^{5} \frac{5^{2}+1}{5^{2}+5}=-\frac{13}{15}
\end{aligned}
$$

so

$$
\left\{a_{i}\right\}=\left\{-1, \frac{5}{6},-\frac{5}{6}, \frac{17}{20},-\frac{13}{15}, \ldots\right\} .
$$

[2] (b) According to the formula, we have

$$
\begin{aligned}
& a_{1}=\frac{1}{1!}=\frac{1}{1}=1 \\
& a_{2}=\frac{1 \cdot 4}{2!}=\frac{4}{2}=2 \\
& a_{3}=\frac{1 \cdot 4 \cdot 7}{3!}=\frac{28}{6}=\frac{14}{3} \\
& a_{4}=\frac{1 \cdot 4 \cdot 7 \cdot 10}{4!}=\frac{280}{24}=\frac{35}{3} \\
& a_{5}=\frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot 13}{5!}=\frac{3640}{120}=\frac{91}{3},
\end{aligned}
$$

so

$$
\left\{a_{i}\right\}=\left\{1,2, \frac{14}{3}, \frac{35}{3}, \frac{91}{3}, \ldots\right\} .
$$

[2] 3. Using the recursion formula, we have

$$
\begin{aligned}
& a_{3}=\frac{a_{1}-1}{a_{2}+1}=\frac{-3-1}{1+1}=-2 \\
& a_{4}=\frac{a_{2}-1}{a_{3}+1}=\frac{1-1}{-2+1}=0 \\
& a_{5}=\frac{a_{3}-1}{a_{4}+1}=\frac{-2-1}{0+1}=-3 \\
& a_{6}=\frac{a_{4}-1}{a_{5}+1}=\frac{0-1}{-3+1}=\frac{1}{2} \\
& a_{7}=\frac{a_{5}-1}{a_{6}+1}=\frac{-3-1}{\frac{1}{2}+1}=-\frac{8}{3}
\end{aligned}
$$

so

$$
\left\{a_{i}\right\}=\left\{-3,1,-2,0,-3, \frac{1}{2},-\frac{8}{3}, \ldots\right\} .
$$

[4] 4. (a) This is an alternating sequence, so we know that a_{i} will take the form

$$
a_{i}=(-1)^{i+1} p_{i}
$$

where

$$
\left\{p_{i}\right\}=\{6,24,120,720,5040, \ldots\} .
$$

Turning our attention to $\left\{p_{i}\right\}$, then, we can see that each of these terms is a factorial, starting with $p_{1}=3$!. Thus $p_{i}=(i+2)$! and so

$$
a_{i}=(-1)^{i+1}(i+2)!.
$$

[4] (b) We can recognise the numerators of each term as powers of 2 , beginning with 2^{0}. The denominators, similarly, are powers of 3 , starting with 3^{2}. Thus

$$
a_{i}=\frac{2^{i-1}}{3^{i+1}}
$$

[4] (c) Observe that the third and fifth terms have denominators which are perfect squares (that is, 3^{2} and 5^{2}), and that this is also trivially true of the first term. So let's try rewriting all of the terms in this form, obtaining

$$
\left\{\frac{7}{1^{2}}, \frac{12}{2^{2}}, \frac{17}{3^{2}}, \frac{22}{4^{2}}, \frac{27}{5^{2}}, \ldots\right\}
$$

Now we can see that the terms in the numerator are increasing by 5, and in fact are always 2 greater than the nearest multiple of 5 . Thus we deduce that

$$
a_{i}=\frac{5 i+2}{i^{2}}
$$

[5] 5. (a) For the numerator to be defined, we must have $y-x^{2} \geq 0$, so $y \geq x^{2}$. To ensure that there is no division by zero, we must have $x^{2}-4 \neq 0$, that is, $x \neq \pm 2$. Hence the domain is the parabola $y=x^{2}$ and its interior, except those points which lie on the vertical lines $x=2$ and $x=-2$.
[5] (b) In the numerator, we require $x>0$. In the denominator, we must have $y^{2}-x^{2} \neq 0$. The corresponding equation is

$$
y^{2}-x^{2}=0 \quad \Longrightarrow \quad(y-x)(y+x)=0
$$

so $y=x$ or $y=-x$. Hence the domain consists of the first and fourth quadrants of the $x y$-plane, except for those points which lie on the lines $y=x$ and $y=-x$.

