MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 1.9
Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) First we find the radius of convergence; we use the Ratio Test with

$$
k_{i}=\frac{(-1)^{i}}{i+1} \quad \text { and } \quad k_{i+1}=\frac{(-1)^{i+1}}{i+2}
$$

so then

$$
\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right|=\lim _{i \rightarrow \infty} \frac{i+1}{i+2}=1=\rho
$$

so the radius of convergence is $R=\frac{1}{\rho}=1$. Hence the series converges for all x such that $|x-2|<1$, that is, for $-1<x-2<1$ or $1<x<3$. Now we check the endpoints. When $x=3$, the given series becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1}
$$

which is convergent by the Alternating Series Test. When $x=1$, the given series becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1}(-1)^{i}=\sum_{i=0}^{\infty} \frac{(-1)^{2 i}}{i+1}=\sum_{i=0}^{\infty} \frac{1}{i+1}
$$

which is divergent by Limit Comparison with the harmonic series. So the interval of convergence is $(1,3]$.
(b) The given series is

$$
f(x)=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1}(x-2)^{i}=\frac{1}{1}-\frac{1}{2}(x-2)+\frac{1}{3}(x-2)^{2}-\frac{1}{4}(x-2)^{3}+\frac{1}{5}(x-2)^{4}-\cdots,
$$

so differentiating it yields

$$
f^{\prime}(x)=\sum_{i=1}^{\infty} \frac{(-1)^{i} i}{i+1}(x-2)^{i-1}=-\frac{1}{2}+\frac{2}{3}(x-2)-\frac{3}{4}(x-2)^{2}+\frac{4}{5}(x-2)^{3}-\cdots .
$$

The radius of convergence is the same as in part (a), namely, $R=1$ so this series also converges for $1<x<3$ and we again need to check the endpoints. When $x=3$, the differentiated series becomes

$$
\sum_{i=1}^{\infty} \frac{(-1)^{i} i}{i+1}
$$

which diverges by the Divergence Test. When $x=1$, it becomes

$$
\sum_{i=1}^{\infty} \frac{(-1)^{i} i}{i+1}(-1)^{i-1}=\sum_{i=1}^{\infty} \frac{-i}{i+1}
$$

which also diverges by the Divergence Test. So the interval of convergence this time is $(1,3)$.
(c) Integrating the given series

$$
f(x)=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1}(x-2)^{i}=\frac{1}{1}-\frac{1}{2}(x-2)+\frac{1}{3}(x-2)^{2}-\frac{1}{4}(x-2)^{3}+\frac{1}{5}(x-2)^{4}-\cdots
$$

gives

$$
\begin{aligned}
\int f(x) d x & =C+\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(i+1)^{2}}(x-2)^{i+1} \\
& =C+\frac{1}{1}(x-2)-\frac{1}{2^{2}}(x-2)^{2}+\frac{1}{3^{2}}(x-2)^{3}-\frac{1}{4^{2}}(x-2)^{4}+\cdots
\end{aligned}
$$

for some constant C which will not affect the interval of convergence. Again, the radius of convergence must be $R=1$ giving convergence for $1<x<3$, and so we check the endpoints. For $x=3$, the integrated series becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(i+1)^{2}}
$$

which converges by the Alternating Series Test. For $x=1$, it becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(i+1)^{2}}(-1)^{i+1}=\sum_{i=0}^{\infty} \frac{-1}{(i+1)^{2}}
$$

which converges by comparison (Limit or Direct) with the convergent p-series $\sum_{i=0}^{\infty} \frac{1}{i^{2}}$. Hence the interval of convergence is $[1,3]$.
2. (a) We write

$$
\frac{8}{4 x+7}=\frac{\frac{8}{7}}{1+\frac{4}{7} x}=\frac{8}{7} \sum_{i=0}^{\infty}\left(-\frac{4}{7} x\right)^{i}=\sum_{i=0}^{\infty} \frac{8}{7}\left(-\frac{4}{7}\right)^{i} x^{i}=\sum_{i=0}^{\infty} 2(-1)^{i}\left(\frac{4}{7}\right)^{i+1} x^{i}
$$

which will converge for all $\left|-\frac{4}{7} x\right|<1$, that is, for $-1<\frac{4}{7} x<1$ or $-\frac{7}{4}<x<\frac{7}{4}$.
(b) Observe that if we set $f(x)=\frac{1}{1-x}$ then

$$
f^{\prime}(x)=\frac{1}{(1-x)^{2}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} .
$$

So we write

$$
\frac{2}{(1-x)^{3}}=\frac{d^{2}}{d x^{2}}\left[\sum_{i=0}^{\infty} x^{i}\right]=\frac{d}{d x}\left[\sum_{i=1}^{\infty} i x^{i-1}\right]=\sum_{i=2}^{\infty} i(i-1) x^{i-2} .
$$

This certainly converges for $|x|<1$, but because we have differentiated, we must check the endpoints. At $x=1$, the differentiated series becomes

$$
\sum_{i=2}^{\infty} i(i-1)
$$

which diverges by the Divergence Test. At $x=-1$, the differentiated series becomes

$$
\sum_{i=2}^{\infty}(-1)^{i-2} i(i-1)
$$

which also diverges by the Divergence Test. So the interval of convergence remains $(-1,1)$.
(c) Note first that

$$
\begin{gathered}
\frac{d}{d x}[\ln (5 x+1)]=\frac{5}{5 x+1} \\
\ln (5 x+1)=5 \int \frac{d x}{1+5 x}=5 \int\left[\sum_{i=0}^{\infty}(-5 x)^{i}\right]=5 \int\left[\sum_{i=0}^{\infty}(-5)^{i} x^{i}\right] \\
=5\left[C+\sum_{i=0}^{\infty} \frac{(-5)^{i}}{i+1} x^{i+1}\right]=C+\sum_{i=0}^{\infty} \frac{(-1)^{i} 5^{i+1}}{i+1} x^{i+1}
\end{gathered}
$$

To solve for the constant C, we observe that when $x=0, \ln (5 x+1)=\ln (1)=0$. Substituting this into the series, we see that $C=0$ as well. Thus

$$
\ln (5 x+1)=\sum_{i=0}^{\infty} \frac{(-1)^{i} 5^{i+1}}{i+1} x^{i+1}
$$

We are guaranteed convergence for $|-5 x|<1$, that is, for $-1<5 x<1$ or $-\frac{1}{5}<x<\frac{1}{5}$. We check the endpoints. For $x=\frac{1}{5}$ the integrated series becomes

$$
\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i+1}
$$

which converges by the Alternating Series Test. For $x=-\frac{1}{5}$, it becomes

$$
\sum_{i=0}^{\infty} \frac{-1}{i+1}
$$

which diverges (try Limit Comparison with the harmonic series). So the interval of convergence is $\left(-\frac{1}{5}, \frac{1}{5}\right]$.
(d) Observe that

$$
\int \frac{-4 x^{3}}{\left(1+x^{4}\right)^{2}} d x=\frac{1}{1+x^{4}}+C
$$

So then

$$
\frac{-4 x^{3}}{\left(1-x^{4}\right)^{2}}=\frac{d}{d x}\left[\frac{1}{1+x^{4}}\right]=\frac{d}{d x}\left[\sum_{i=0}^{\infty}\left(-x^{4}\right)^{i}\right]=\frac{d}{d x}\left[\sum_{i=0}^{\infty}(-1)^{i} x^{4 i}\right]=\sum_{i=1}^{\infty}(-1)^{i} 4 i x^{4 i-1}
$$

This converges for $\left|-x^{4}\right|<1$, that is, for $-1<x<1$. As usual, we check the endpoints. At $x=1$, the differentiated series becomes

$$
\sum_{i=1}^{\infty}(-1)^{i} 4 i
$$

which diverges by the Divergence Test. At $x=-1$, the differentiated series becomes

$$
\sum_{i=1}^{\infty}(-1)^{i+1} 4 i
$$

which also diverges by the Divergence Test. Hence the interval of convergence is still $(-1,1)$.

