MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SECTION 1.8
Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) We use the Ratio Test with

$$
k_{i}=\frac{1}{2 i+1} \quad \text { so } \quad k_{i+1}=\frac{1}{2 i+3} .
$$

Then

$$
\lim _{i \rightarrow \infty}\left|\frac{c_{i+1}}{c_{i}}\right|=\lim _{i \rightarrow \infty} \frac{2 i+1}{2 i+3}=1=\rho .
$$

Hence the radius of convergence is $R=\frac{1}{\rho}=1$, and so the power series converges for $|x|<1$, that is, for $-1<x<1$. We check the endpoints $x= \pm 1$. For $x=1$, the series becomes $\sum_{i=0}^{\infty} \frac{1}{2 i+1}$ which diverges (try the Limit Comparison Test with the harmonic series). For $x=-1$, the series becomes $\sum_{i=0}^{\infty} \frac{(-1)^{i}}{2 i+1}$ which converges by the Alternating Series Test. Hence the interval of convergence is $[-1,1)$.
(b) We use the Root Test with $k_{i}=\frac{1}{i^{i}}$. Then

$$
\lim _{i \rightarrow \infty}\left|k_{i}\right|^{\frac{1}{i}}=\lim _{i \rightarrow \infty} \frac{1}{i}=0=\rho
$$

So the radius of convergence is $R=\infty$ and the interval of convergence must be \mathbb{R}.
(c) We use the Ratio Test with

$$
k_{i}=\frac{1}{3 i(i+1)} \quad \text { so } \quad k_{i+1}=\frac{1}{3(i+1)(i+2)} .
$$

Then

$$
\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right|=\lim _{i \rightarrow \infty} \frac{3 i(i+1)}{3(i+1)(i+2)}=1=\rho .
$$

So the radius of convergence is $R=\frac{1}{\rho}=1$ and the series converges for all x such that $|x-4|<1$, that is, for $-1<x-4<1$ or $3<x<5$. We check the endpoints $x=3$ and $x=5$. For $x=5$ the series becomes $\sum_{i=0}^{\infty} \frac{1}{3 i(i+1)}$ which converges (try the Limit Comparison Test with the convergent p-series $\sum_{i=0}^{\infty} \frac{1}{i^{2}}$). For $x=3$, the series becomes $\sum_{i=0}^{\infty} \frac{(-1)^{i}}{3 i(i+1)}$ which converges by the Alternating Series Test. Hence the interval of convergence is [3,5].
(d) We use the Ratio Test with

$$
k_{i}=\frac{i}{\left(i^{2}+1\right) 4^{i}} \quad \text { so } \quad k_{i+1}=\frac{i+1}{\left((i+1)^{2}+1\right) 4^{i+1}}
$$

Then

$$
\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right|=\lim _{i \rightarrow \infty} \frac{i+1}{\left((i+1)^{2}+1\right) 4^{i+1}} \cdot \frac{\left(i^{2}+1\right) 4^{i}}{i}=\lim _{i \rightarrow \infty} \frac{(i+1)\left(i^{2}+1\right)}{4 i\left[(i+1)^{2}+1\right]}=\frac{1}{4}=\rho .
$$

Then the radius of convergence is $R=\frac{1}{\rho}=4$ and the series converges for all x such that $|x+7|<4$, that is, for $-4<x+7<4$ or $-11<x<-3$. We check the endpoints $x=-11$ and $x=-3$. For $x=-3$, the series becomes

$$
\sum_{i=0}^{\infty} \frac{i}{\left(i^{2}+1\right) 4^{i}} 4^{i}=\sum_{i=0}^{\infty} \frac{i}{\left(i^{2}+1\right)}
$$

which diverges (try the Limit Comparison Test with the harmonic series). For $x=-11$, the series becomes

$$
\sum_{i=0}^{\infty} \frac{i}{\left(i^{2}+1\right) 4^{i}}(-4)^{i}=\sum_{i=0}^{\infty}(-1)^{i} \frac{i}{\left(i^{2}+1\right)}
$$

which converges by the Alternating Series Test. Hence the interval of convergence is $[-11,-3)$.
(e) Note that the starting index is $i=2$, but this will affect only the sum of the power series (were we able to find it), not its convergence properties. We use the Ratio Test with

$$
k_{i}=\ln (i) \quad \text { so } \quad k_{i+1}=\ln (i+1)
$$

Then

$$
\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right|=\lim _{i \rightarrow \infty} \frac{\ln (i+1)}{\ln (i)} .
$$

This is an $\frac{\infty}{\infty}$ indeterminate form so we let $f(x)=\frac{\ln (x+1)}{\ln (x)}$ and use L'Hospital Rule:

$$
\lim _{x \rightarrow \infty} \frac{\ln (x+1)}{\ln (x)} \stackrel{\mathrm{H}}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x+1}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{x}{x+1}=1=\rho
$$

Hence the radius of convergence is $R=\frac{1}{\rho}=1$ and the series converges for all $|x|<1$, that is, for $-1<x<1$. We check the endpoints $x= \pm 1$. For $x=1$, the series becomes $\sum_{i=2}^{\infty} \ln (i)$ which diverges by the Divergence Test. For $x=-1$, the series becomes $\sum_{i=2}^{\infty}(-1)^{i} \ln (i)$ which diverges for the same reason. So the interval of convergence is $(-1,1)$.
(f) We use the Ratio Test with

$$
k_{i}=\frac{(-1)^{i}(2 i)!}{i!} \quad \text { so } \quad k_{i+1}=\frac{(-1)^{i+1}(2 i+2)!}{(i+1)!}
$$

Then

$$
\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right|=\lim _{i \rightarrow \infty} \frac{(2 i+2)!}{(i+1)!} \cdot \frac{i!}{(2 i)!}=\lim _{i \rightarrow \infty} \frac{(2 i+1)(2 i+2)}{i+1}=\infty=\rho .
$$

So the radius of convergence is $R=0$ and therefore the interval of convergence consists of only the centre of the power series, $x=12$.
(g) First we need to write the series as

$$
\begin{aligned}
\sum_{i=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots(2 i)}{1 \cdot 3 \cdot 5 \cdots(2 i-1)}(5 x-1)^{i} & =\sum_{i=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots(2 i)}{1 \cdot 3 \cdot 5 \cdots(2 i-1)}\left[5\left(x-\frac{1}{5}\right)\right]^{i} \\
& =\sum_{i=1}^{\infty} \frac{5^{i}[2 \cdot 4 \cdot 6 \cdots(2 i)]}{1 \cdot 3 \cdot 5 \cdots(2 i-1)}\left(x-\frac{1}{5}\right)^{i}
\end{aligned}
$$

Now we can use the Ratio Test with

$$
k_{i}=\frac{5^{i}[2 \cdot 4 \cdot 6 \cdots(2 i)]}{1 \cdot 3 \cdot 5 \cdots(2 i-1)} \quad \text { so } \quad k_{i+1}=\frac{5^{i+1}[2 \cdot 4 \cdot 6 \cdots(2 i) \cdot(2 i+2)]}{1 \cdot 3 \cdot 5 \cdots(2 i-1) \cdot(2 i+1)} .
$$

Then

$$
\begin{aligned}
\lim _{i \rightarrow \infty}\left|\frac{k_{i+1}}{k_{i}}\right| & =\lim _{i \rightarrow \infty} \frac{5^{i+1}[2 \cdot 4 \cdot 6 \cdots(2 i) \cdot(2 i+2)]}{1 \cdot 3 \cdot 5 \cdots(2 i-1) \cdot(2 i+1)} \cdot \frac{1 \cdot 3 \cdot 5 \cdots(2 i-1)}{5^{i}[2 \cdot 4 \cdot 6 \cdots(2 i)]} \\
& =\lim _{i \rightarrow \infty} \frac{5(2 i+2)}{2 i+1}=5=\rho
\end{aligned}
$$

So $R=\frac{1}{\rho}=\frac{1}{5}$. The series converges for all x such that $\left|x-\frac{1}{5}\right|<\frac{1}{5}$, that is, for $0<x<\frac{2}{5}$. We check the endpoints $x=0$ and $x=\frac{2}{5}$. For $x=\frac{2}{5}$, the series becomes

$$
\sum_{i=0}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots(2 i)}{1 \cdot 3 \cdot 5 \cdots(2 i-1)}
$$

Note that the factors in the numerator are all larger than the factors in the denominator and so

$$
\lim _{i \rightarrow \infty} \frac{2 \cdot 4 \cdot 6 \cdots(2 i)}{1 \cdot 3 \cdot 5 \cdots(2 i-1)}=\infty
$$

Thus the series diverges by the Divergence Test. Similarly, the series obtained for $x=0$,

$$
\sum_{i=0}^{\infty}(-1)^{i} \frac{2 \cdot 4 \cdot 6 \cdots(2 i)}{1 \cdot 3 \cdot 5 \cdots(2 i-1)},
$$

also diverges by the Divergence Test and thus the interval of convergence is $\left(0, \frac{2}{5}\right)$.
(h) We must use the Ratio Test from first principles, given the power of $2 i$. We have

$$
a_{i}=\frac{5^{2 i+1}}{9^{i}}(x-3)^{2 i} \quad \text { and } \quad a_{i+1}=\frac{5^{2 i+3}}{9^{i+1}}(x-3)^{2 i+2}
$$

so

$$
\begin{aligned}
L & =\lim _{i \rightarrow \infty}\left|\frac{a_{i+1}}{a_{i}}\right| \\
& =\lim _{i \rightarrow \infty}\left|\frac{5^{2 i+3}}{9^{i+1}}(x-3)^{2 i+2} \cdot \frac{9^{i}}{5^{2 i+1}(x-3)^{2 i}}\right| \\
& =\lim _{i \rightarrow \infty} \frac{25}{9}(x-3)^{2} \\
& =\frac{25}{9}(x-3)^{2} .
\end{aligned}
$$

The power series will converge if

$$
\frac{25}{9}(x-3)^{2}<1 \quad \Longrightarrow \quad(x-3)^{2}<\frac{9}{25} \quad \Longrightarrow \quad-\frac{3}{5}<x-3<\frac{3}{5} \quad \Longrightarrow \quad \frac{12}{5}<x<\frac{18}{5}
$$

Hence the radius of convergence is $R=\frac{3}{5}$. At $x=\frac{18}{5}$, the power series becomes

$$
\sum_{i=0}^{\infty} \frac{5^{2 i+1}}{9^{i}}\left(\frac{3}{5}\right)^{2 i}=\sum_{i=0}^{\infty} \frac{5^{2 i+1}}{9^{i}}\left(\frac{9}{25}\right)^{i}=\sum_{i=0}^{\infty} 5,
$$

which diverges by the Divergence Test. Similarly, at $x=\frac{12}{5}$, the power series becomes

$$
\sum_{i=0}^{\infty} \frac{5^{2 i+1}}{9^{i}}\left(-\frac{3}{5}\right)^{2 i}=\sum_{i=0}^{\infty} \frac{5^{2 i+1}}{9^{i}}\left(\frac{9}{25}\right)^{i}=\sum_{i=0}^{\infty} 5
$$

so it also diverges. Hence the interval of convergence is $\left(\frac{12}{5}, \frac{18}{5}\right)$.

