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1. (a)

SOLUTIONS
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The absolute series is Z e )

On Worksheet 1.4, we used the Integral Test to show

that this series dlverges Otherwise, we could also deduce this by trying the Limit
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Comparison Test with the (divergent) harmonic series E —:
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Hence the given series is not absolutely convergent. To see if it’s conditionally convergent,
we use the Alternating Series Test. Observe that
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as required. Also, letting f(x) = ln(x) , we have
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SO {@} is decreasing. Thus, by the Alternating Series Test, the given series is conver-

gent. Since it is convergent but not absolutely convergent, we conclude that the given
series is conditionally convergent.
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The absolute series is E TR To test its convergence, we use the Limit Comparison
7
i=1

1
Test with the convergent p-series E <t
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so the absolute series is convergent. Hence the given series must also converge, and it is
absolutely convergent.

Observe that
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so by the Divergence Test, the given series is divergent. (Note that this means its absolute
series diverges also.)




Z —, which is a divergent p-series. So the given series
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(d) The absolute series is Z
is not absolutely convergent We use the Alternating Series Test on the given series. We

observe that
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Also, setting f(x)

} is decreasing. Hence, by the Alternating Series Test, the given series is conver-
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To determine its convergence, we use the Direct Compar-
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gent, and so it is conditionally convergent

( ) observing that for ¢ > 1

e) The absolute series is
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Hence the absolute series convergent, and therefore the given series is absolutely conver-
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(—1)" so the series can be written Z
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(f) First note that cos(im)

series is Z . This is a divergent p-series, so the given series is not absolutely con-
vergent. To test the convergence of the given series, we use the Alternating Series Test
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Also, letting f(x)

is decreasing. Thus, by the Alternating Series Test, the given series is convergent
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2. Let q; = ﬁ First note that
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To check that {a;} is decreasing, note that a;,1 = m SO

= — . = . = <1 fori>1.
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Hence we can use the remainder estimate for the Alternating Series Test. The sum of the
first 5 terms of the series is
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~ —0.2211995.

So we know that

|Rs| < |ag| = 5555 ~ 0.0000003
—0.0000003 < s—s5 < 0.0000003
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where s is the sum of the series.

3. (a) We use the Ratio Test, letting
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Since L < 1, the given series converges.
(b) We use the Ratio Test, letting
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Since L < 1, the given series converges.
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(c) We use the Root Test, letting a; = ( ! ) . Then
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Since L > 1, the given series diverges.
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(d) We use the Root Test, letting a; = i (—) . Then
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Since L < 1, the given series converges.
(e) We use the Ratio Test, letting
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This is a 1 indeterminate form, so we let f(z) = (Z£)" and set
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and since L > 1, the series diverges.
First we try the Ratio Test, for which a;11 = —
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so the Ratio Test fails. So instead we try the Root Test:
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(In fact, it can easily be seen that the given series is a

so the Root Test also fails

convergent p-series. )
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We use the Root Test, letting a; = (—1)"+! <— - \/Z) . Then

So since L < 1, the given series converges.

We use the Ratio Test, letting
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So since L > 1, the given series diverges.
We use the Ratio Test, letting
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Since L > 1, the given series diverges.
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