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SOLUTIONS

1. (a) The absolute series is
∞∑
i=2

ln(i)

i
. On Worksheet 1.4, we used the Integral Test to show

that this series diverges. Otherwise, we could also deduce this by trying the Limit

Comparison Test with the (divergent) harmonic series
∞∑
i=2

1

i
:

lim
i→∞

ln(i)
i
1
i

= lim
i→∞

ln(i) =∞.

Hence the given series is not absolutely convergent. To see if it’s conditionally convergent,
we use the Alternating Series Test. Observe that

lim
i→∞

ln(i)

i
H
= lim

i→∞

1
i

1
= lim

i→∞

1

i
= 0,

as required. Also, letting f(x) = ln(x)
x

, we have

f ′(x) =
1− ln(x)

x2
< 0 for x > 2,

so
{

ln(i)
i

}
is decreasing. Thus, by the Alternating Series Test, the given series is conver-

gent. Since it is convergent but not absolutely convergent, we conclude that the given
series is conditionally convergent.

(b) The absolute series is
∞∑
i=1

1

3i2 + 1
. To test its convergence, we use the Limit Comparison

Test with the convergent p-series
∞∑
i=1

1

i2
:

lim
i→∞

1
3i2+1

1
i2

= lim
i→∞

i2

3i2 + 1
=

1

3
,

so the absolute series is convergent. Hence the given series must also converge, and it is
absolutely convergent.

(c) Observe that

lim
i→∞

√
i

1 + 4
√
i

=
1

4
,

so by the Divergence Test, the given series is divergent. (Note that this means its absolute
series diverges also.)
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(d) The absolute series is
∞∑
i=1

3
√
i

i
=
∞∑
i=1

1

i
2
3

, which is a divergent p-series. So the given series

is not absolutely convergent. We use the Alternating Series Test on the given series. We
observe that

lim
i→∞

1

i
2
3

= 0.

Also, setting f(x) = 1

x
2
3

= x−
2
3 , we have

f ′(x) = −2

3
x−

5
3 < 0,

so
{

1

i
2
3

}
is decreasing. Hence, by the Alternating Series Test, the given series is conver-

gent, and so it is conditionally convergent.

(e) The absolute series is
∞∑
i=1

1

ei3
. To determine its convergence, we use the Direct Compar-

ison Test with the convergent geometric series
∞∑
i=1

(
1

e

)i

, observing that for i ≥ 1,

(ei)3 > ei

1

(ei)3
<

1

ei

1

ei3
<

(
1

e

)i

.

Hence the absolute series convergent, and therefore the given series is absolutely conver-
gent.

(f) First note that cos(iπ) = (−1)i so the series can be written
∞∑
i=1

(−1)i

i
1
4

and the absolute

series is
∞∑
i=1

1

i
1
4

. This is a divergent p-series, so the given series is not absolutely con-

vergent. To test the convergence of the given series, we use the Alternating Series Test.
Note that

lim
i→∞

1

i
1
4

= 0.

Also, letting f(x) = 1

x
1
4

= x−
1
4 , we have

f ′(x) = −1

4
x−

5
4 < 0

so
{

1

i
1
4

}
is decreasing. Thus, by the Alternating Series Test, the given series is convergent

and hence conditionally convergent.
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2. Let ai = 1
4ii!

. First note that

lim
i→∞

1

4ii!
= 0.

To check that {ai} is decreasing, note that ai+1 = 1
4i+1(i+1)!

so

ai+1

ai
=

1

4i+1(i+ 1)!
· 4ii!

1
=

4i

4i+1
· i!

(i+ 1)!
=

1

4(i+ 1)
< 1 for i ≥ 1.

Hence we can use the remainder estimate for the Alternating Series Test. The sum of the
first 5 terms of the series is

s5 = −1

4
+

1

32
− 1

384
+

1

6144
− 1

122880
≈ −0.2211995.

So we know that

|R5| < |a6| = 1
2949120

≈ 0.0000003
−0.0000003 < s− s5 < 0.0000003
−0.2211998 < s < −0.2211992

where s is the sum of the series.

3. (a) We use the Ratio Test, letting

ai = (−1)i
i3

3i
so ai+1 = (−1)i+1 (i+ 1)3

3i+1
.

Then

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

(i+ 1)3

3i+1
· 3i

i3
= lim

i→∞

i3 + 3i2 + 3i+ 1

3i3
=

1

3
= L.

Since L < 1, the given series converges.

(b) We use the Ratio Test, letting

ai =
4i

i!
so ai+1 =

4i+1

(i+ 1)!
.

Then

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

4i+1

(i+ 1)!
· i!

4i
= lim

i→∞

4

i+ 1
= 0 = L.

Since L < 1, the given series converges.

(c) We use the Root Test, letting ai =

(
3i

i+ 2

)i

. Then

lim
i→∞
|ai|

1
i = lim

i→∞

3i

i+ 2
= 3 = L.

Since L > 1, the given series diverges.
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(d) We use the Root Test, letting ai = i

(
1

7

)2i

. Then

lim
i→∞
|ai|

1
i = lim

i→∞
i
1
i

(
1

7

)2

=
1

49
lim
i→∞

i
1
i =

1

49
= L.

Since L < 1, the given series converges.

(e) We use the Ratio Test, letting

ai =
ii

i!
so ai+1 =

(i+ 1)i+1

(i+ 1)!
.

Then

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
n→∞

(i+ 1)i+1

(i+ 1)!
· i!
ii

= lim
i→∞

(i+ 1)i+1

(i+ 1)ii
= lim

i→∞

(i+ 1)i

ii
= lim

i→∞

(
i+ 1

i

)i

.

This is a 1∞ indeterminate form, so we let f(x) =
(
x+1
x

)x
and set

y =

(
x+ 1

x

)x

ln(y) = x ln

(
x+ 1

x

)
=

ln
(
x+1
x

)
1
x

lim
x→∞

ln(y) = lim
x→∞

ln
(
x+1
x

)
1
x

H
= lim

x→∞

x
x+1

(
− 1

x2

)
− 1

x2

= lim
x→∞

x+ 1

x
= 1

so

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = e1 = e = L,

and since L > 1, the series diverges.

(f) Let ai =
1

i3
√
i

=
1

i
7
2

. First we try the Ratio Test, for which ai+1 =
1

(i+ 1)
7
2

:

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

1

(i+ 1)
7
2

· i
7
2 = lim

i→∞

(
i

i+ 1

) 7
2

= 1
7
2 = 1 = L,

so the Ratio Test fails. So instead we try the Root Test:

lim
i→∞
|ai|

1
i = lim

i→∞

1

i
7
2i

= lim
i→∞

(
1

i
1
i

) 7
2

= 1
7
2 = 1 = L,

so the Root Test also fails. (In fact, it can easily be seen that the given series is a
convergent p-series.)
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(g) We use the Root Test, letting ai = (−1)i+1

(
3

2
− i
√
i

)i

. Then

lim
i→∞
|ai|

1
i = lim

i→∞

(
3

2
− i
√
i

)
= lim

i→∞

(
3

2
− i

1
i

)
=

3

2
− 1 =

1

2
= L.

So since L < 1, the given series converges.

(h) We use the Ratio Test, letting

ai =
2i

i2 + 6
so ai+1 =

2i+1

(i+ 1)2 + 6
.

Then

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

2i+1

(i+ 1)2 + 6
· i

2 + 6

2i
= lim

i→∞

2(i2 + 6)

(i+ 1)2 + 6
= 2 = L.

So since L > 1, the given series diverges.

(i) We use the Ratio Test, letting

ai =
(4i)!

(i!)3
so ai+1 =

(4i+ 4)!

((i+ 1)!)3
.

Then

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

(4i+ 4)!

((i+ 1)!)3
· (i!)3

(4i)!

= lim
i→∞

(4i+ 1)(4i+ 2)(4i+ 3)(4i+ 4)

(i+ 1)3
=∞ = L.

Since L > 1, the given series diverges.


