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SOLUTIONS

1. (a) We have

lim
i→∞

ai = lim
i→∞

√
i

2−
√
i
·

1√
i

1√
i

= lim
i→∞

1
2√
i
− 1

=
1

0− 1
= −1,

so {ai} converges to −1.

(b) We have

lim
i→∞

ai = lim
i→∞

i

2−
√
i
·

1√
i

1√
i

= lim
i→∞

√
i

2√
i
− 1

= −∞,

so {ai} diverges.

(c) We have

lim
i→∞

ai = lim
i→∞

[
7−

(
−1

4

)i]
= 7− lim

i→∞

(
−1

4

)i
= 7− 0 = 7,

so {ai} converges to 7.

(d) We have

ai =
3 · 7i

23i−1 =
3 · 7i

23i · 2−1
=

6 · 7i

8i
= 6

(
7

8

)i
.

Thus

lim
i→∞

ai = 6 lim
i→∞

(
7

8

)i
= 6 · 0 = 0,

so {ai} converges to 0.

(e) Since 5i is the dominant term in the denominator, we can write

lim
i→∞

ai = lim
i→∞

5i + 1

5i − 1
·

1
5i

1
5i

= lim
i→∞

1 +
(
1
5

)i
1−

(
1
5

)i =
1 + 0

1− 0
= 1.

Hence {ai} converges to 1.

(f) Since 3i is the dominant term in the denominator, we can write

lim
i→∞

ai = lim
i→∞

5i + 1

3i − 2i
·

1
3i

1
3i

= lim
i→∞

(
5
3

)i
+
(
1
3

)i
1−

(
2
3

)i = lim
i→∞

(
5
3

)i
+ 0

1− 0
= lim

i→∞

(
5

3

)i
,

which does not exist because the common ratio r = 5
3
> 1. Hence {ai} is divergent.
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2. (a) Observe that sin
(
iπ
2

)
assumes values of 1, 0, −1, 0, and then repeats. Thus the first few

terms of the sequence are
{2, 1, 0, 1, 2, 1, 0, 1, . . .}

and this pattern repeats infinitely. Hence we can see that {ai} diverges.

(b) Note that

ai =
i!

(i + 2)!
=

1 · 2 · · · i
1 · 2 · · · i · (i + 1) · (i + 2)

=
1

(i + 1)(i + 2)
=

1

i2 + 3i + 2
,

so

lim
i→∞

ai = lim
i→∞

1

i2 + 3i + 2
= 0.

Hence {ai} converges to 0.

(c) Recall that

1 + 2 + 3 + · · ·+ i =
i(i + 1)

2
.

Hence

1

i2
+

2

i2
+ · · ·+ i

i2
=

1 + 2 + · · ·+ i

i2
=

(
i(i+1)

2

)
i2

=
i + 1

2i
=

1

2
+

1

2i
so

lim
i→∞

ai = lim
i→∞

(
1

2
+

1

2i

)
=

1

2

and {ai} converges to 1
2
.

(d) We use the Squeeze Theorem. Observe that since 0 ≤ sin2(i) ≤ 1 for all i,

0 ≤ sin2(i)

5i
≤ 1

5i
.

But

lim
i→∞

0 = 0 and lim
i→∞

1

5i
= lim

i→∞

(
1

5

)i
= 0,

so by the Squeeze Theorem,

lim
i→∞

sin2(i)

5i
= 0

and hence {ai} converges to 0.

(e) Since lim
i→∞

ai is an ∞
∞ indeterminate form, we let f(x) =

ln(2 + ex)

9x
and then we use

l’Hôpital’s Rule:

lim
x→∞

ln(2 + ex)

9x
H
= lim

x→∞

ex

2+ex

9

= lim
x→∞

1
18
ex

+ 9

=
1

9
.



–3–

(Alternatively, rather than dividing through by ex in the second-last line, we could
simply apply L’Hôpital’s Rule again.) Either way, we see that {ai} converges to 1

9
by

the Evaluation Theorem.

(f) Again we use the Evaluation Theorem. This time, lim
i→∞

ai is a 1∞ indeterminate form.

Thus we let f(x) =

(
1 +

3

x

)x
and write

y = ln

(
1 +

3

x

)x
= x ln

(
1 +

3

x

)
=

ln
(
x+3
x

)
1
x

.

Now lim
x→∞

y is a 0
0

indeterminate form, and we can apply l’Hôpital’s Rule:

lim
x→∞

y
H
= lim

x→∞

x
x+3
·
(
− 3
x2

)
− 1
x2

= 3 lim
x→∞

x

x + 3

= 3.

Therefore lim
x→∞

f(x) = e3, and so {ai} converges to e3 as well.

3. (a) To test for monotonicity, we let

f(x) =
3x− 7

4x + 1
=⇒ f ′(x) =

31

(4x + 1)2
> 0

for all x. Hence {ai} is increasing. Clearly, then, the sequence is bounded below by
a1 = −4

5
. Also, 4i+1 > 3i−7 for all i ≥ 1, so ai < 1, and therefore 1 is an upper bound.

Hence −4
5
< ai < 1 and the sequence is bounded. Thus it converges by the Bounded

Monotonic Sequence Theorem.

(b) The first few terms of the sequence are{
1

2
,−1

2
,−1,−1

2
,
1

2
, 1, . . .

}
and these terms cycle over and over again. Hence the sequence is not monotonic. No
tail of the sequence can be monotonic either, because the oscillatory behaviour continues
for all n. However, as is well known, −1 ≤ cos

(
iπ
3

)
≤ 1 and so the sequence must be

bounded.

(c) Let

f(x) =
4
√
x

x + 5
so f ′(x) =

10− 2x√
x(x + 5)2

.

The denominator here is strictly positive, but the numerator is non-negative for 1 ≤ x ≤
5 and negative for x > 5. Hence we have f ′(x) ≥ 0 for 1 ≤ x ≤ 5 and f ′(x) < 0 for
x > 5. Thus {ai} itself is not monotonic. However, deleting at least the first four terms
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results in a sequence that is decreasing, so {ai} does have a monotonic tail. Next, note

that x = 5 corresponds to a maximum value of f(x), namely f(5) = 2
√
5

5
= a5, so {ai}

is bounded above. Also, ai > 0 for all i ≥ 1, so since 0 < ai <
2
√
5

5
the sequence is

bounded. Thus it converges by the Bounded Monotonic Sequence Theorem.

(d) We have

ai =
1 · 4 · 7 · · · (3i− 2)

3 · 6 · 9 · · · (3i)
=⇒ ai+1 =

1 · 4 · 7 · · · (3i− 2) · (3i + 1)

3 · 6 · 9 · · · (3i) · (3i + 3)
.

Thus

ai+1

ai
=

1 · 4 · 7 · · · (3i− 2) · (3i + 1)

3 · 6 · 9 · · · (3i) · (3i + 3)
· 3 · 6 · 9 · · · (3i)

1 · 4 · 7 · · · (3i− 2)
=

3i + 1

3i + 3
< 1

because 3i+ 1 < 3i+ 3 for all i ≥ 1. Hence {ai} is decreasing. This means that a1 = 1
3

is
an upper bound, while we note that both the numerator and denominator are positive,
so 0 is a lower bound. Since 0 < ai < 1, the sequence is bounded. Thus it converges by
the Bounded Monotonic Sequence Theorem.


