MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SEction 1.1

Math 2000 Worksheet
FALL 2018

SOLUTIONS

1. (a) We can write

$$
\frac{(2 i)!}{2 \cdot 4 \cdot 6 \cdots 2 i}=\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots(2 i-1)(2 i)}{2 \cdot 4 \cdot 6 \cdots 2 i}=1 \cdot 3 \cdot 5 \cdots(2 i-1) .
$$

(b) Here,

$$
\frac{2 \cdot 4 \cdot 6 \cdots(2 i)}{5 \cdot 10 \cdot 15 \cdots(5 i)}=\frac{2^{i}(1 \cdot 2 \cdot 3 \cdots i)}{5^{i}(1 \cdot 2 \cdot 3 \cdots i)}=\frac{2^{i} i!}{5^{i} i!}=\left(\frac{2}{5}\right)^{i}
$$

2. (a) $\left\{a_{i}\right\}=\left\{1,0,-\frac{1}{9}, 0, \frac{1}{25}, \ldots\right\}$
(b) $\left\{a_{i}\right\}=\left\{2,-\frac{3}{2}, \frac{2}{3},-\frac{5}{24}, \frac{1}{20}, \ldots\right\}$
(c) $\left\{a_{i}\right\}=\left\{4, \frac{2}{3}, \frac{1}{4}, \frac{1}{9}, \frac{1}{19}, \ldots\right\}$
3. (a) The numerator of each term is simply i, while the denominator in each case is a perfect cube, starting with 2^{3}. Thus

$$
a_{i}=\frac{i}{(i+1)^{3}} .
$$

(b) This is an alternating sequence, so let's first consider the sequence consisting of the absolute value of each term,

$$
\left\{p_{i}\right\}=\{3,8,13,18, \ldots\}
$$

The difference between each term is 5 , so

$$
p_{i}=5 i-2
$$

Thus, for the original sequence,

$$
a_{i}=(-1)^{i}(5 i-2)
$$

(c) It's obvious that the sequence is formed by alternately subtracting or adding 8 to the preceding term. However, this seems difficult to represent as an equation. It's easier to view this as an alternating sequence in which 4 is either added to or subtracted from 6. Thus

$$
a_{i}=6+4(-1)^{i+1}
$$

